首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
芯片冷却用分形微管道散热器内的压降与传热   总被引:5,自引:0,他引:5       下载免费PDF全文
受到哺乳动物消化系统和血液循环系统中物质运输与分配网络所具有的分形特征启发,文中设计、加工出了一种电子芯片冷却用的硅制分形微管道网络散热器.在给出分形微管道网络构造过程的基础上,探讨了分形微管道网络内部微流体的换热与压力降特性.针对利用多路感应耦合等离子蚀刻工艺制造出的硅制分形微管道网络散热器,理论计算所得结论与流动与传热实验数据均证明:当热传递面积、温差、努谢尔特数均相同的情况下,分形微管道网络散热器比传统的平行微管道阵列散热器具有更高的热传递效率;而在具有相同流速、热传递率的要求下,分形微管道网络散热器所需的泵送功率远低于平行微管道阵列散热器所需的泵送功率;分形维数越高,分形微管道网络散热器的热传递效率将越高,且所需的泵送功率将越低.  相似文献   

2.
散热器的散热性能对维持中央处理器(CPU)的运行速率和使用寿命具有重要影响.通过对CPU散热器进行热设计,优化散热器的结构,采用热阻分析法建立CPU散热器的数学模型,利用CFD数值模拟方法研究不同肋片长度的CPU散热器的散热性能,并对肋长为21mm的CPU散热器进行案例分析.研究结果表明:实验范围内,加长散热器肋片长度到27mm可有效降低传热热阻,提高散热性能;超过该长度,肋片长度的增加对散热性能的影响不大.  相似文献   

3.
为了降低环境温度变化对外腔可调谐激光器波长稳定性的影响,采用有限元分析方法得出了外腔可调谐激光器的温度场分布特点和热变形机理,提出了一种优化的光具座结构,并对优化结构的散热性能和热变形进行了理论分析和数值模拟。结果表明,该优化的光具座结构具有高效的传热性能,大幅降低了热变形对腔长的影响,从而提高了激光器的在不同工作环境温度下的波长稳定性。  相似文献   

4.
CPU热柱散热器实验研究与温度场数值模拟   总被引:1,自引:0,他引:1  
对CPU热柱散热器的散热性能进行了实验研究,测试加热功率、风速等主要工况不同时发热电子元件表面的温度,比较并分析了测试结果。运用有限元分析软件ANSYS对该散热器进行了温度场数值模拟分析。研究在风冷条件下,同等尺寸的普通铜柱CPU散热器和热柱散热器的温度分布。结果表明,热柱散热器具有良好的散热性能,在较低风速下也能有效地降低CPU的温度。  相似文献   

5.
由于水冷散热器体积小,流体在散热器内流动形式复杂,使散热器设计加工和性能测试在常规条件下有一定局限性。通过建立微通道水冷散热器三维模型,运用ANSYS软件对影响散热器性能的因素(进口水温、环境温度、进口流速)进行了模拟分析,得出了不同条件下芯片工作时的温度场分布,为后续微通道水冷散热器的优化设计提供了理论依据。  相似文献   

6.
在连续工作过程中,由于温度过高会影响金属化膜电容器的稳定性和安全性,有必要对其稳态进行热分析。通过有限元分析法和试验验证研究了一种脉冲用金属化膜电容器的稳态温度分布情况。分析了电容器内部热传导的过程,计算了电容器热传导载荷和散热边界条件,建立了电容器有限元仿真模型,对其施加热载荷情况下计算了内部温度分布情况,通过试验验证了仿真模型的正确性。并进一步分析了芯子卷绕参数和电容器工作周期对电容器内部温度分布的影响。结果显示:通过稳态热分析可以对电容器性能进行前置评估,对电容器优化设计有一定指导作用。  相似文献   

7.
机载光电吊舱热特性分析   总被引:1,自引:1,他引:0  
机载光电吊舱的热特性包括附加热载荷和结构传热热载荷两个方面。在一个飞行架次内,对各个分系统产生的热量分析计算,进而获得附加热载荷。在一定假设条件下,对结构传热热载荷进行了分析计算。最后,提出一种物理仿真的方法,用于验证结构传热热载荷的分析是否符合实际情况。  相似文献   

8.
随着电子芯片发展的高度集成化,散热问题日益凸显,芯片微通道散热器以其优越的散热性能而被广泛应用。文章从影响微通道散热器性能的主要因素,即流动工质、微通道结构、制作材料三个方面对最新研究成果进行综述。通过对各种研究结果的分析,发现一些常规槽道中被忽略的因素,如槽道宽高比、进出口效应、表面粗糙度、槽道孔隙率等会对芯片微通道散热器的换热性能产生较大的影响。同时指出了目前研究工作中存在的不足,展望了芯片冷却用微通道散热器的发展前景,并提出了新的研究思路。  相似文献   

9.
为解决大功率LED散热问题,构造了一种一体化并 行多通道大功率LED回路热管散热器。利用水作为工质,在不同加热功率、不同倾斜角以及 不同充液比条件下对该新结构热管散热器的热性 能进行了研究。结果表明,这种新结构热管散热器不仅能使散热器上下底板处于均温状态, 而且当芯片加 热功率达到200W时,芯片加热面中心最高温度不超过71.8℃;倾斜角度对热管换热性能影响不大;在一 定加热功率范围内,新结构热管散热器的热阻随加热功率的增大而减小,当芯片加热功率达 到240W时, 热阻最小,最小可达0.19K/W。构造的一体化并行多通道大功率LED 回路热管散热器具有很好的传热性能,并提高了承载高热流密度的能力。  相似文献   

10.
对CSP芯片热可靠性进行了研究。运用数值分析方法,采用有限元软件ANSYS8.0,模拟分析在循环热载荷条件下芯片的热应力,以及芯片可能的失效形式。  相似文献   

11.
This paper presents an experimental study of flow boiling heat transfer in a microchannel heat sink. The dielectric fluid Fluorinert FC-77 is used as the boiling liquid after it is fully degassed. The experiments were performed at three flow rates ranging from 30-50ml/min. The heat transfer coefficients, as well as the critical heat flux (CHF), were found to increase with flow rate. Wall temperature measurements at three locations (near the inlet, near the exit, and in the middle of heat sink) reveal that wall dryout first occurs near the exit of the microchannels. The ratio of heat transfer rate under CHF conditions to the limiting evaporation rate was found to decrease with increasing flow rate, asymptotically approaching unity. Predictions from a number of correlations for nucleate boiling heat transfer in the literature are compared against the experimental results to identify those that provide a good match. The results of this work provide guidelines for the thermal design of microchannel heat sinks in two-phase flow  相似文献   

12.
Liquid-cooled microchannel heat sinks are regarded as being amongst the most effective solutions for handling high levels of heat dissipation in space-constrained electronics. However, obstacles to their successful incorporation into products have included their high pumping requirements and the limits on available space which precludes the use of conventional pumps. Moreover, the transport characteristics of microchannels can be different from macroscale channels because of different scaling of various forces affecting flow and heat transfer. The inherent potential of microchannel heat sinks, coupled with the gaps in understanding of relevant transport phenomena and difficulties in implementation, have guided significant research efforts towards the investigation of flow and heat transfer in microchannels and the development of microscale pumping technologies and novel diagnostics. In this paper, the potential and capabilities of microchannel heat sinks and micropumps are discussed. Their working principle, the state of the art, and unresolved issues are reviewed. Novel approaches for flow field measurement and for integrated micropumping are presented. Future developments necessary for wider incorporation of microchannel heat sinks and integrated micropumps in practical cooling solutions are outlined.  相似文献   

13.
One of the most promising technologies to replace air-cooling of micro-processor chips is flow boiling in microchannels. The very high heat flux dissipation from micro-processor chips is highly non-uniform due to the presence of multiple localized hot spots usually related to the localization of bridges and gate oxide shorts. Previous studies focused on the performance of microchannels under uniform heating conditions. Recently, Revellin and Thome (see Int. J. Heat Mass Transf., vol 51, no.5-6, p. 1216-25, 2008) have proposed a new theoretical model to predict the critical heat flux (CHF) in microchannels. This model has been modified here to take into account a non-uniform axial heat flux along a microchannel. The model is used here to perform a local hot spot study to investigate the effects of fluid, saturation temperature, mass flux, microchannel diameter, heated length, size, location and number of hot spots as well as the distance between two consecutive hot spots. Based on the present simulations, to best dissipate a hot spot's heat flux, microchannel heat sinks should follow the following recommendations for a channel of fixed length: determine the optimum channel diameter for the fluid (typically either very small or large is best), utilize as high of mass flux as feasible, and design with as low of saturation temperature as possible. Furthermore, the local hot spot size should be as small as possible, the number of local hot spots as few as possible and the distance between two hot spots as large as possible. Utilizing the present numerical method for individual microchannels arranged in parallel in a multi-microchannel cooling element, it is possible to simulate the entire power dissipation profile of a microprocessor die for local limits of CHF.  相似文献   

14.
In this paper, an entropy generation minimization (EGM) procedure is employed to optimize the overall performance of microchannel heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed by considering an appropriate control volume and applying mass, energy, and entropy balances. The effect of channel aspect ratio, fin spacing ratio, heat sink material, Knudsen numbers, and accommodation coefficients on the entropy generation rate is investigated in the slip flow region. Analytical/empirical correlations are used for heat transfer and friction coefficients, where the characteristic length is used as the hydraulic diameter of the channel. A parametric study is also performed to show the effects of different design variables on the overall performance of microchannel heat sinks.   相似文献   

15.
为了研究LED模组的散热性能,对其基板的横向和纵向散热性能进行了对比研究。首先建立加快基板横向和纵向散热性能的有限元模型,即在基板上覆盖高导热层和基板内添加高热导率热沉结构。并运用有限元(FEM)分析方法对两种基板的散热效果以及基板和LED芯片温度分布的均匀性进行了对比分析。最后,对于基板上覆盖高导热层的结构,结合实际工艺和散热性能的考虑,进一步优化了高导热层的厚度。  相似文献   

16.
Geometric optimization of a micro heat sink with liquid flow   总被引:1,自引:0,他引:1  
Over the course of the past decade, a number of investigations have been conducted to better understand the fluid flow and heat transfer in microchannel heat sinks, particularly as it pertains to applications involving the thermal control of electronic devices. In the current investigation, a detailed numerical simulation of the heat transfer occurring in silicon-based microchannel heat sinks has been conducted in order to optimize the geometric structure using a simplified, three-dimensional (3-D) conjugate heat transfer model [two-dimensional (2-D) fluid flow and 3-D heat transfer]. The micro heat sink modeled in this investigation consists of a 10 mm long silicon substrate with rectangular microchannels fabricated with different geometries. The rectangular microchannels had widths ranging from 20 /spl mu/m to 220 /spl mu/m and a depth ranging from 100 /spl mu/m to 400 /spl mu/m. The effect of the microchannel geometry on the temperature distribution in the microchannel heat sink is presented and discussed assuming a constant pumping power. The model was validated by comparing the predicted results with previously published experimental results and theoretical analyses, and indicated that both the physical geometry of the microchannel and the thermophysical properties of the substrate are important parameters in the design and optimization of these microchannel heat sinks. For the silicon-water micro heat sink, the optimal configuration for rectangular channel heat sinks occurred when the number of channels approached 120 channels per centimeter.  相似文献   

17.
A three-dimensional finite element model of heat transfer and residual stress within high power laser diodes and their heat sinks is developed. These components are typically used in telecommunication applications. The model addresses both p-side down and p-side up laser diodes mounted on a variety of commercially available gold plated diamond heat sinks. In addition, the model is optimized with respect to the dimensions of the diamond film, and the laser diode cavity lengths. Finally, the design and performance of diamond film heat sinks for high performance GaAs and InP laser diodes are discussed. The results demonstrate the superior performance achieved through thermal engineering of the dominant thermal transport path from the laser diode heat source through diamond films to the heat sink.  相似文献   

18.
电子器件散热片换热特性的数值研究   总被引:1,自引:0,他引:1  
对三种不同截面形状的散热片,在不同风速和相同加热功率下的换热特性进行数值模拟。得到三种散热片的底面芯片最高温度、传热系数以及压降在不同风速下的变化关系。通过对计算结果的分析可知:三种模型的底面芯片最高温度随着风速的增加而下降,传热系数和压降随着风速的增加而增大,这与相关实验数据的变化趋势一致。提高风速可以有效增强换热效果,但是压降的影响不容忽视。对比三种模型,收缩式散热片模型较另外两种模型具有换热效果好、压降小的优点,可为高热流密度的电子设备冷却方案的设计和改进提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号