共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
精确的亚像素级图像配准是图像超分辨重建中的关键问题.在图像超分辨重建中广泛使用的基于像素特征的光流法,对于大幅度运动场的计算很难做到精确的亚像素级配准.本文考虑了一种基于SIFT(scale invariant feature transform)特征的鲁棒性多帧图像超分辨重建算法.首先提取输入的低分辨待匹配图像对的SIFT关键点及其特征矢量.随后选取候选匹配关键点对,通过RANSAC(random sample consensus)鲁棒方法去除奇异值,并根据假设的平移性几何约束模型,获得图像对的平移运动配准参数,然后选取视场中心对应的或指定的图像帧为初始参考帧,再使用传统的超分辨重建框架获得最终的重建结果.仿真实验结果表明,提出的基于SIFT特征的图像超分辨重建方案是有效的,超分辨重建的图像质量在主观评价和客观指标上都获得了优于经典算法的效果. 相似文献
3.
《计算机应用与软件》2017,(6)
针对电力监控系统中输电线路易晃动造成覆冰图像模糊,提出基于光流法运动配准的覆冰图像超分辨率重建算法。该算法首先利用基于光流法的图像配准算法估计图像间的亚像素级运动矢量,得到前向和后向配准图像;然后,利用迭代反投影(IBP)算法对估计出的图像分别进行超分辨率重建;最后,根据配准误差加权得到最终的输出图像。实验结果表明,相对于传统算法,该算法的重建结果无论是在峰值信噪比和标准差还是基于对比敏感度的无参考图像清晰度上,均有明显提高,具有较好的客观指标和视觉效果。 相似文献
4.
基于图像配准的POCS超分辨率图像重构 总被引:3,自引:1,他引:3
图像重构是数字图像处理的一个重要的分支,根据图像序列进行重构的高分辨率图像在多种应用邻域得以应用。该文简要介绍了图像成像原理以及降阶模型,并提出在图像配准的基础上,对图像序列采用POCS方法高分辨率重构,将图像校准算法和POCS方法有机地结合在一起,同时给出了其中详细的算法和实现过程。实验仿真结果表明该算法当图像间平移量小于10个象素、旋转角小于5时收敛,且运算量小,收敛速度快,具有很好的图像超分辨率重构能力。 相似文献
5.
王芳 《自动化技术与应用》2021,40(4):99-102
针对传统的影像超分辨率重建方法受到原始影像分辨率的影响,导致重建效果差、信噪比高的问题,提出基于图像配准的新媒体视觉影像超分辨率重建方法.仿真结果表明,采用该方法进行新媒体视觉影像超分辨重建的视觉表达能力较好,输出峰值信噪比较高. 相似文献
6.
基于keren改进配准算法的POCS超分辨率重建 总被引:2,自引:0,他引:2
详细介绍了keren亚象素配准算法及其不足,提出了keren算法及其迭代算法的改进算法。该算法基于简化的四参数仿射变换模型而不是传统的刚体变换模型,成功地避免了keren算法因为角度的泰勒级数展开所带来的误差,大大地提高了配准精度。实验仿真结果表明该算法与keren迭代算法相比角度绝对误差显著的降低;平移参数在15°的大角度旋转情况下获得了0.1个象素以下的绝对误差精度,在小角度的情况下获得了0.01个象素以下的绝对误差精度,最后采用POCS方法进行序列图像的高分辨率重建,实验仿真结果表明基于改进配准算法的POCS重建具有良好的配准精度和超分辨率重建效果。 相似文献
7.
8.
9.
基于支持向量机的图像亚像素配准及超分辨率重建 总被引:1,自引:0,他引:1
超分辨率重建是根据场景的一组低分辨率图像重建其高分辨率图像。重建算法中,低分辨图像之间的亚像素配准是很重要的一部分。提出了一种基于支持向量机的亚像素配准方法,将低分辨图像之间的相对旋转平移参数看成支持向量机的目标集,通过支持向量回归建立图像特征与目标集之间的映射关系,从而计算图像间的相对运动参数。实验表明,与现有算法相比,所提出的算法具有较高的精度。 相似文献
10.
基于光流场模型的图像配准方法计算简单快速,但采用原始光流场模型进行图像配准会使图像出现严重的模糊导致不能使用。提出了对原始光流场模型的正则项进行改进,同时引入运动模糊图像复原算法,改进的算法改善了原始光流场模型造成的图像模糊。实验结果表明,基于改进光流场模型的医学图像配准算法配准结果准确,具有较快的配准速度。 相似文献
11.
基于SIFT的POCS图像超分辨率重建 总被引:1,自引:0,他引:1
针对传统的POCS图像超分辨率重建算法中广泛使用的基于改进的Keren配准算法,对于序列帧间存在剪切和非均匀尺度变换现象时,很难做到精确的亚像素级配准,文中讨论了一种基于SIFT算法的POCS序列图像超分辨率重建算法。首先利用SIFT算法提取序列帧与参考帧间的SIFT关键点对,随后选取匹配关键点对,通过RANSAC去除误配点的同时估算出六参数仿射变换参数,最后使用POCS重建算法得到最终的重建结果。实验结果表明:该方法能有效地解决因运动估计不准而引起的重建图像效果不好的问题,特别是在序列帧间存在剪切和非均匀尺度变换现象时,重建效果明显好于传统的POCS算法,具有更强适应性。 相似文献
12.
13.
在L1范数图像超分辨率重建算法框架下,引入参数自适应估计,结合差分图像统计特性和概率分布模型提出一种基于混合先验模型的超分辨率重建方法。实验证明该方法可以弥补L1范数重建方法的不足,获得更多的图像细节,对模型误差表现出良好的稳健性,可以加速收敛。 相似文献
14.
针对单幅低分辨率灰度图像,提出一种基于稀疏表示和字典学习的超分辨率重建算法,通过选择合适的过完备字典,图像块可表示为字典元素的稀疏线性组合。对于输入的低分辨率图像,寻求每一图像块的稀疏表示,利用此表示系数产生高分辨率图像输出。为消除Elad方法重建图像中产生的黑色边缘并提高重建图像的质量,文中在稀疏表示方法的基础上利用反向投影法对其进行改进。仿真实验结果表明,改进算法不仅实现了上述目的,而且在图像信噪比和算法运行效率上都有所提高,从而达到了算法改进的目的。 相似文献
15.
16.
17.
针对车牌识别中所拍摄的图像序列存在分辨率较低的问题,提出了利用图像间的互补信息来重建一幅高分辨率图像的方法,以便于车牌图像的识别。通过迭代求解法和高斯金字塔模型,快速精确地估计得到配准参数,采用凸集投影(POCS)算法对图像序列进行了超分辨率重建。实验表明算法具有亚像素级的配准精度和较强的稳健性,重建图像取得了良好的视觉效果。 相似文献
18.
19.
医学影像分辨率的提高能够有效帮助医生作出诊断,针对口腔环境复杂性和牙齿拓扑结构多样性的问题,提出一种基于齿科序列图像的超分辨率重建算法.通过对点集筛选和配准策略的优化,以及引入鲁棒损失函数,改进了传统的迭代最近邻点配准法,用于序列图像间的配准;然后针对齿科序列图像非下采样Contourlet变换域内不同的子带信息,采用了特定的子带系数融合策略,用于子带信息融合;最后基于非下采样Contourlet反变换得到了高分辨率齿科图像.实验结果表明,本文算法提高了重建指标,具有较强的鲁棒性. 相似文献