首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents an adaptive neuro-fuzzy inference system (ANFIS) approach performed to estimate the number of adverse events where the dependent variables are adverse events leading to four types of variables: number of people killed, wounded, hijacked and total number of adverse events. Fourteen infrastructure development projects were selected based on allocated budgets values at different time periods, population density, and previous month adverse event numbers selected as independent variables. Firstly, number of independent variables was reduced by using ANFIS input selection approach. Then, several ANFIS models were performed and investigated for Afghanistan and the whole country divided into seven regions for analysis purposes. Performances of models were assessed and compared based on the mean absolute errors. The difference between observed and estimated value was also calculated within \({\pm }1\) range with values around 90 %. We included multiple linear regression (MLR) model results to assess the predictive power of the ANFIS approach, in comparison to a traditional statistical approach. When the model accuracy was calculated according to the performance metrics, ANFIS showed greater predictive accuracy than MLR analysis, as indicated by experimental results. As a result of this study, we conclude that ANFIS is able to estimate the occurrence of adverse events according to economical infrastructure development project data.  相似文献   

2.
《Ergonomics》2012,55(2):278-286
This study investigated the effects of visual cues, muscular fatigue, task performance and experience of working on inclined surfaces on activity of postural muscles in the lower limbs associated with maintaining balance on three inclined surfaces – 0°, 14° and 26°. Normalised electromyographic (NEMG) data were collected in 44 professional roofers bilaterally from the rectus femoris, biceps femoris, tibialii anterior and gastrocnemii medial muscle groups. The 50th and 95th percentile NEMG amplitudes were used as EMG variables. Results showed that inclination angle and task performance caused a significant increase in the NEMG amplitudes of all postural muscles. Visual cues were significantly associated with a decrease in the 95th percentile EMG amplitude for the right gastrocnemius medial and tibialis anterior. Fatigue was related to a significant decrease in the NEMG amplitude for the rectus femoris. Experience of working on inclined surfaces did not have a significant effect on the NEMG amplitude.  相似文献   

3.
Adaptive neuro-fuzzy inference system (ANFIS) models are proposed as an alternative approach of evaporation estimation for Yuvacik Dam. This study has three objectives: (1) to develop ANFIS models to estimate daily pan evaporation from measured meteorological data; (2) to compare the ANFIS model to the multiple linear regression (MLR) model; and (3) to evaluate the potential of ANFIS model. Various combinations of daily meteorological data, namely air temperature, relative humidity, solar radiation and wind speed, are used as inputs to the ANFIS so as to evaluate the degree of effect of each of these variables on daily pan evaporation. The results of the ANFIS model are compared with MLR model. Mean square error, average absolute relative error and coefficient of determination statistics are used as comparison criteria for the evaluation of the model performances. The ANFIS technique whose inputs are solar radiation, air temperature, relative humidity and wind speed, gives mean square errors of 0.181 mm, average absolute relative errors of 9.590% mm, and determination coefficient of 0.958 for Yuvacik Dam station, respectively. Based on the comparisons, it was found that the ANFIS technique could be employed successfully in modelling evaporation process from the available climatic data.  相似文献   

4.
There is an increasing interest in modeling groundwater contamination, particularly geogenic contaminant, on a large scale both from the researcher’s as well as policy maker’s point of view. However, modeling large scale groundwater contamination is very challenging due to the incomplete understanding of geochemical and hydrological processes in the aquifer. Despite the incomplete understanding, existing knowledge provides sufficient hints to develop predictive models of geogenic contamination. In this study we used a global database of fluoride measurements (>60,000 entities), as well as global-scale information relevant to soil, geology, elevation, climate, and hydrology to evaluate several hybrid methods. The hybrid methods were developed by combining two classification techniques including classification and regression tree (CART) and “knowledge based clustering” (KBC) and three predictive techniques including multiple linear regression (MLR), adoptive neuro-fuzzy inference system (ANFIS) and logistic regression (LR). The results indicated that combination of classification techniques and nonlinear predictive method (ANFIS and LR) were more reliable than others and provided a better prediction capability. Among the different hybrid procedures, combination of KBC-ANFIS and also CART-ANFIS resulted in larger true positive rates and smaller false negative rates for both training and test data sets. However, as the CART classifier is very unstable and very sensitive to resampling, the combination of KBC and ANFIS is preferred as it not only is more robust but also is flexible enough to account for geohydrological conditions.  相似文献   

5.
Two nitrogen experiments on rice were conducted in 2002, and the reflectances (350 to 2500 nm) and pigment contents (chlorophylls a and b, total chlorophylls and carotenoids) for leaf and panicle samples at different growth stages were measured in the laboratory. After performing an outlier analysis, the number of samples were 843 for leaves and 188 for panicles. Absorption features at 430, 460, 470, 640 and 660 nm for different pigments, and the relative reflectance of the green peak around 550 nm calculated by the continuum‐removed method, as well as the red edge position (REP) of rice leaves and panicles were selected as the independent variables, and measured pigment contents were selected as the dependent variables. Then, back propagation neural network (BPN) models, a kind of artificial neuron network (ANN), and multivariate linear regression models (MLR) were trained and tested. The main objective of this study was to compare the predictive ability of the ANN models to that of the MLR models in estimating the content of pigments in rice leaves and panicles. Results showed that all BPN models gave higher coefficients of determination (R2) and lower absolute errors (ABSEs) and root mean squared errors (RMSEs) than the corresponding MLR models, in both calibration and validation tests. Further significance tests by paired t tests and bootstrapping algorithms indicated that most of the BPN models outperformed the MLR models. When trained by combination data that did not meet the assumption of normal distribution, the BPN models appeared to not only have a better learning ability, but also had a more accurate predictive power than the MLR models. The estimation of leaf pigments was more accurate than that of panicle pigments, independent of which model was used.  相似文献   

6.
The Adaptive Neuro‐Fuzzy Inference System (ANFIS) is proposed to simulate and analyze the mapping between the physical properties of tactile textures and people's affective responses. People were asked to rate the tactile feeling of 37 tactile textures against six pairs of adjectives on a semantic differential questionnaire. The friction coefficient, average roughness, compliance, and a thermal parameter of each tactile texture were measured. ANFIS models were built to predict the affective responses to tactile textures. The resulting ANFIS models demonstrated a good match between predicted and actual responses, and always yielded better performance when compared to linear and exponential regression models. The effects of physical properties of textures on affective responses were also analyzed by simulating the synthetic data with ANFIS. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
The objective of this research is to provide designers with efficient work posture guidance for the design of workplaces. Analysis of data produced through the use of electromyography (EMG) facilitated the achievement of this objective. In the experimental study, essential anthropometric data such as body link length, elbow flexion angles, body weight, and load weights were collected on the basis of a static 2-dimensional model. Three different load weights and carrying positions were considered, and the muscle activity of the back musculature was recorded with EMG. The relationships among normalized EMG levels, muscle forces, compression forces, and moments were analyzed. Finally, a linear regression equation of muscle forces at normalized EMG levels, as well as a quadratic regression equation of normalized EMG levels on load weights and carrying positions, was developed. © 1999 John Wiley & Sons, Inc  相似文献   

8.
In this paper, Adaptive Neural Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) models are discussed to determine peak pressure load measurements of the 0, 0.2, 0.4 and 0.6% glass fibers (by weight) reinforced concrete pipes having 200, 300, 400, 500 and 600 mm diameters. For comparing the ANFIS, MLR and experimental results, determination coefficient (R2), root mean square error (RMSE) and standard error of estimates (SEE) statistics were used as evaluation criteria. It is concluded that ANFIS and MLR are practical methods for predicting the peak pressure load (PPL) values of the concrete pipes containing glass fibers and PPL values can be predicted using ANFIS and MLR without attempting any experiments in a quite short period of time with tiny error rates. Furthermore ANFIS model has the predicting potential better than MLR.  相似文献   

9.
Flood prediction is an important for the design, planning and management of water resources systems. This study presents the use of artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), multiple linear regression (MLR) and multiple nonlinear regression (MNLR) for forecasting maximum daily flow at the outlet of the Khosrow Shirin watershed, located in the Fars Province of Iran. Precipitation data from four meteorological stations were used to develop a multilayer perceptron topology model. Input vectors for simulations included the original precipitation data, an area-weighted average precipitation and antecedent flows with one- and two-day time lags. Performances of the models were evaluated with the RMSE and the R 2. The results showed that the area-weighted precipitation as an input to ANNs and MNLR and the spatially distributed precipitation input to ANFIS and MLR lead to more accurate predictions (e.g., in ANNs up to 2.0 m3 s?1 reduction in RMSE). Overall, the MNLR was shown to be superior (R 2 = 0.81 and RMSE = 0.145 m3 s?1) to ANNs, ANFIS and MLR for prediction of maximum daily flow. Furthermore, models including antecedent flow with one- and two-day time lags significantly improve flow prediction. We conclude that nonlinear regression can be applied as a simple method for predicting the maximum daily flow.  相似文献   

10.
In this study, a fuzzy logic‐based model for predicting the ultimate strength of FRP‐confined circular reinforced concrete (RC) columns is presented. The adaptive neuro‐fuzzy inference system (ANFIS) model was generated using valid experimental data with seven input variables. Input parameters were considered in such a way that all the parameters affecting the compressive strength of the column were simultaneously involved. Different models for compressive strength of fiber reinforced polymer (FRP)‐confined concrete including the model in American Concrete Institute (ACI), to calculate the maximum stress endured by the column under axial load, were presented and compared with the results of the ANFIS model. Also, for similarity to other models, the ACI equation for calculating the maximum compressive strength tolerated by a column was considered without reducing coefficients as ACI‐N and was compared with other models. The results obtained from the ANFIS model were compared with results from other models. ANFIS model showed the highest accuracy among all models in predicting the experimental results.  相似文献   

11.
《Ergonomics》2012,55(10):1145-1157
Abstract

Previous studies of twisting have revealed substantial cocontraction of agonist and antagonist muscles within the torso when torsional moments are generated. The objective of the current study was to quantify the activations and cocontraction of eight trunk muscles as subjects maintained an axially rotated trunk posture and resisted external applied bending moments. Ten subjects twisted their torsos 25° to the right (clockwise) and resisted 20 and 40 Nm bending moments from 12 directions. The moment directions were in a transverse plane and labelled clockwise as viewed from above, ranging from 0° (mid-saggital, anterior) to 330°, in 30° increments. RMS EMG amplitude data were collected using surface electrodes and normalized to maximal voluntary contractions. Significant changes were observed in the muscle responses due to the interaction of the moment direction and moment magnitude for six of the eight muscles tested. Comparison of the present data with that collected previously in neutral postures indicated: (1) a large increase in the activation levels of the right erector spinae and the left external oblique muscles; and (2) a counter-clockwise shift in the moment direction at which the peak activation of these same muscles occurs. Analysis of the relative activation levels (RALs), constructed from the NEMG data to quantify the cocontraction, indicated that the changes in cocontraction were more robust in response to changes in the bending moment's direction as opposed to changes in bending moment's magnitude.  相似文献   

12.
Facing fierce competition in marketplaces, companies try to determine the optimal settings of design attribute of new products from which the best customer satisfaction can be obtained. To determine the settings, customer satisfaction models relating affective responses of customers to design attributes have to be first developed. Adaptive neuro-fuzzy inference systems (ANFIS) was attempted in previous research and shown to be an effective approach to address the fuzziness of survey data and nonlinearity in modeling customer satisfaction for affective design. However, ANFIS is incapable of modeling the relationships that involve a number of inputs which may cause the failure of the training process of ANFIS and lead to the ‘out of memory’ error. To overcome the limitation, in this paper, rough set (RS) and particle swarm optimization (PSO) based-ANFIS approaches are proposed to model customer satisfaction for affective design and further improve the modeling accuracy. In the approaches, the RS theory is adopted to extract significant design attributes as the inputs of ANFIS and PSO is employed to determine the parameter settings of an ANFIS from which explicit customer satisfaction models with better modeling accuracy can be generated. A case study of affective design of mobile phones is used to illustrate the proposed approaches. The modeling results based on the proposed approaches are compared with those based on ANFIS, fuzzy least-squares regression (FLSR), fuzzy regression (FR), and genetic programming-based fuzzy regression (GP-FR). Results of the training and validation tests show that the proposed approaches perform better than the others in terms of training and validation errors.  相似文献   

13.

The accurate estimation of soil dispersivity (α) is required for characterizing the transport of contaminants in soil. The in situ measurement of α is costly and time-consuming. Hence, in this study, three soft computing methods, namely adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and gene expression programming (GEP), are used to estimate α from more readily measurable physical soil variables, including travel distance from source of pollutant (L), mean grain size (D 50), soil bulk density (ρ b), and contaminant velocity (V c). Based on three statistical metrics [i.e., mean absolute error, root-mean-square error (RMSE), and coefficient of determination (R 2)], it is found that all approaches (ANN, ANFIS, and GEP) can accurately estimate α. Results also show that the ANN model (with RMSE = 0.00050 m and R 2 = 0.977) performs better than the ANFIS model (with RMSE = 0.00062 m and R 2 = 0.956), and the estimates from GEP are almost as accurate as those from ANFIS. The performance of ANN, ANFIS, and GEP models is also compared with the traditional multiple linear regression (MLR) method. The comparison indicates that all of the soft computing methods outperform the MLR model. Finally, the sensitivity analysis shows that the travel distance from source of pollution (L) and bulk density (ρ b) have, respectively, the most and the least effect on the soil dispersivity.

  相似文献   

14.
The different designs of various interactive gaming controllers affect posture and muscle loading of the body. It is assumed that prolonged exposure to the interactive gaming controllers can affect the effectiveness in using the game for the purposes of learning. This study explores the differences in behavioural responses among students with different temperaments regarding mathematic gameplay by comparing the touch‐based and gesture‐based interactive devices. The experiment was designed for 119 5‐year‐old kindergarten children, and valid data from 99 individuals were analysed for this study. The results indicated that participants in the touch‐based interaction (TBI) groups performed better than the participants in the gesture‐based interaction (GBI) groups with respect to numerical counting in both games. The results also showed that among all dimensions of temperaments, only persistence had a positive correlation to TBI. This implied that TBI was preferred over GBI for kindergarten children. Accordingly, e‐learning designers should place more emphasis on TBI.  相似文献   

15.

This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model.

  相似文献   

16.
The aim of this study was to predict percentage tree cover from Envisat Medium Resolution Imaging Spectrometer (MERIS) imagery with a spatial resolution of 300 m by comparing four common models: a multiple linear regression (MLR) model, a linear mixture model (LMM), an artificial neural network (ANN) model and a regression tree (RT) model. The training data set was derived from a fine spatial resolution land cover classification of IKONOS imagery. Specifically, this classification was aggregated to predict percentage tree cover at the MERIS spatial resolution. The predictor variables included the MERIS wavebands plus biophysical variables (the normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of photosynthetically active radiation (fPAR), fraction of green vegetation covering a unit area of horizontal soil (fCover) and MERIS terrestrial chlorophyll index (MTCI)) estimated from the MERIS data. An RT algorithm was the most accurate model to predict percentage tree cover based on the Envisat MERIS bands and vegetation biophysical variables. This study showed that Envisat MERIS data can be used to predict percentage tree cover with considerable spatial detail. Inclusion of the biophysical variables led to greater accuracy in predicting percentage tree cover. This finer-scale depiction should be useful for environmental monitoring purposes at the regional scale.  相似文献   

17.
This paper deals with the application of artificial neural network (ANN) based ANFIS approach to automatic generation control (AGC) of a three unequal area hydrothermal system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Appropriate generation rate constraints (GRC) have been considered for the thermal and hydro plants. The hydro area is considered with an electric governor and thermal area is considered with reheat turbine. The design objective is to improve the frequency and tie-line power deviations of the interconnected system. 1% step load perturbation has been considered occurring either in any individual area or occurring simultaneously in all the areas. It is a maiden application of ANFIS approach to a three unequal area hydrothermal system with GRC considering perturbation in a single area as well as in all areas. The performance of the ANFIS controller is compared with the results of integral squared error (ISE) criterion based integral controller published previously. Simulation results are presented to show the improved performance of ANFIS controller in comparison with the conventional integral controller. The results indicate that the controllers exhibit better performance. In fact, ANFIS approach satisfies the load frequency control requirements with a reasonable dynamic response.  相似文献   

18.
The engineering properties of rocks play a significant role in planning and designing of mining and civil engineering projects. A laboratory database of mechanical and engineering properties of rocks is always required for site characterization and mineral exploitation. Due to discontinuous and variable nature of rock masses, it is difficult to obtain all physicomechanical properties of rocks precisely. Prediction of unconfined compressive strength from seismic wave velocities (Compressional wave, Shear wave) and density of rock using generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference systems (ANFIS) can be appropriate and alternate methods to minimize the time and cost of tests. GRNN and ANFIS models were trained with 41 data sets using conjugate gradient descent algorithms and hybrid learning algorithm, respectively. Performance of both the models was examined with 15 testing data sets. In the present study, obtained network performance indices such as correlation coefficient, mean absolute percentage error, root mean square error and variance account for indicate high performance of predictive capability of GRNN system and closer to actual data over the ANFIS.  相似文献   

19.
Heart rate variability (HRV) parameters can be used as specific indicator of autonomic nervous system (ANS) behavior. ANS, with its main two branches, sympathetic and parasympathetic, may be considered as a coordinated neuronal network which controls heart rate continually. Many parameters define heart rate variability in different domains such as time, frequency or nonlinear. An excessively high computational complexity can occur when developing models for medical applications when the best set of inputs to use is not known. To build a model that can predict a specific process output, it is desirable to select a subset of variables that are truly relevant or the most influential to this output. This procedure is typically called variable selection, and it corresponds to finding a subset of the full set of recorded variables that exhibits good predictive abilities. In this study an architecture for modeling complex systems in function approximation and regression was used, based on using adaptive neuro-fuzzy inference system (ANFIS). Variable searching using the ANFIS network was performed to determine how the ANS branches affect the most relevant HRV parameters. The method utilized may work as a basis for examination of ANS influence on HRV activity.  相似文献   

20.
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号