首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
T.H.C. Childs  D. Cowburn   《Wear》1984,100(1-3):59-76
Frustrated total internal reflection has been used to measure the real areas of contact between flat belts and V-belts running on transparent pulleys. Changes in contact with pressure and in active arc extent with torque have been seen and used with measurements of belt tensions and surface roughness to study the adhesive sliding friction of belts. The ratio of surface shear strength to Young's modulus of the contacts has been found to be about 0.1, as in fundamental studies of rubber friction. Belt construction, either the woven fabric substrate or embossing of flat belts or the fibre reinforcement of raw-edge V-belts, has also been shown to influence the friction coefficient.  相似文献   

2.
Frictional forces between cohesive powder particles studied by AFM   总被引:2,自引:0,他引:2  
A range of commercially important powders (hydrated alumina, limestone, titania and zeolite) and glass ballotini were attached to atomic force microscope cantilevers, and inter-particle friction forces studied in air using lateral force microscopy (LFM). The in situ calibration procedure for friction forces is described. LF images, line profiles, LF histograms, surface roughness, pull-off forces, and the load dependence of friction in the range 0-25 nN were studied for both particle-particle and particle-wall (steel) contacts. The single-particle friction results are discussed in terms of contact mechanics theory. Particle-particle contacts showed load-dependent friction, involving single asperity contacts (non-linear behaviour) or multi-asperity contacts (linear behaviour). Particle-wall contacts usually showed little load dependence and were more adhesive. The results are also related to shear stress-normal stress data (yield loci) for the same materials from bulk shear testers.  相似文献   

3.
Friction and wear behaviors of hydrogenated fullerene-like (H-FLC) carbon films sliding against Si3N4 ceramic balls were performed at different contact loads from 1 to 20 N on a reciprocating sliding tribometer in air. It was found that the films exhibited non-Amontonian friction behaviors, the coefficient of friction (COF) decreased with normal contact load increasing: the COF was ~0.112 at 1 N contact load, and deceased to ultralow value (~0.009) at 20 N load. The main mechanism responsible for low friction and wear under varying contact pressure is governed by hydrogenated carbon transfer film that formed and resided at the sliding interfaces. In addition, the unique fullerene-like structures induce well elastic property of the H-FLC films (elastic recovery 78%), which benefits the high load tolerance and induces the low wear rate in air condition. For the film with an ultralow COF of 0.009 tested under 20 N load in air, time of flight secondary ion mass spectrometry (ToF-SIMS) signals collected inside and outside the wear tracks indicated the presence of C2H3 and C2H5 fragments after tribological tests on the H-FLC films surface. We think that the tribochemistry and elastic property of the H-FLC films is responsible for the observed friction behaviors, the high load tolerance, and chemical inertness of hydrogenated carbon-containing transfer films instead of the graphitization of transfer films is responsible for the steady-state low coefficients of friction, wear, and interfacial shear stress.  相似文献   

4.
This paper describes a computational method to calculate the friction force between two rough surfaces. In the model used, friction results from forces developed during elastic deformation and shear resistance of adhesive junctions at the contact areas. Contacts occur between asperities and have arbitrary orientations with respect to the surfaces. The size and slope of each contact area depend on external loads, mechanical properties and topographies of surfaces. Contact force distribution is computed by iterating the relationship between contact parameters, external loads, and surface topographies until the sum of normal components of contact forces equals the normal load. The corresponding sum of tangential components of contact forces constitutes the friction force. To calculate elastic deformation in three dimensions, we use the method of influence coefficients and its adaptation to shear forces to account for sliding friction. Analysis presented in Appendix A gives approximate limits within which influence coefficients developed for flat elastic half-space can apply to rough surfaces. Use of the method of residual correction and a successive grid refinement helped rectify the periodicity error introduced by the FFT technique that was used to solve for asperity pressures. The proposed method, when applied to the classical problem of a sphere on a half-space as a benchmark, showed good agreement with previous results. Calculations show how friction changes with surface roughness and also demonstrate the method's efficiency.  相似文献   

5.
Robert L. Fusaro 《Wear》1982,75(2):403-422
A pin-on-disk type of friction and wear apparatus was used to study the effect of load, contact stress and rider area of contact on the friction and wear properties of polyimide-bonded graphite fluoride films. Different rider area contacts were obtained by initially generating flats (with areas of 0.0035,0.0071, 0.0145 and 0.0240 cm2) on 0.476 cm radius hemispherically tipped riders. Different projected contact stresses were obtained by applying loads of 2.5–58.8 N to the flats. Two film wear mechanisms were observed. The first was found to be a linear function of contact stress and was independent of rider area of contact. The second was found to increase exponentially as the stress increased. The second also appeared to be a function of rider contact area. Wear equations for each mechanism were empirically derived from the experimental data. In general, friction coefficients increased with increasing rider contact area and with sliding duration. This was related to the build-up of thick rider transfer films.  相似文献   

6.
The robustness and noise warranty costs of rubber belts used for power transmission are directly affected by the frictional properties under varying environmental conditions. This paper presents an experimental characterization and analysis of the friction and vibro-acoustic behavior of automotive ribbed rubber belts under wet conditions. The experimental results show that the static friction under wet condition is higher than the corresponding kinetic friction by 40%-1040% for different belts; and the wet static friction is also much higher than the dry static friction. The wet kinetic friction is lower than the dry kinetic friction by about 30-40%. The occurrence of wet static friction is associated with the strong noise of the belt system. The spectrogram analysis of recorded sound demonstrates that the sound exhibits an impulsive sound pattern with broadband frequency extending to 20 kHz. In this study, the belt vibration is also measured and the spectrum results correlated with those of the sound measurement. The capillary effect, dry adhesive effect and the boundary lubrication effect are discussed based on adhesion models, which are used to correlate with experimental results and to interpret the effects of relevant parameters. The presented results are based on the start-up running of a newly developed belt-pulley test rig, which are different from some published results based on SAE Standard J2432. The test rig based on SAE Standard J2432 is actually operated as water lubricated coast-down, which is not applicable to characterizing the friction properties of belt in wet start-up running.  相似文献   

7.
A numerical simulation technique for calculating the complete subsurface stress field for three-dimensionally rough bodies in sliding contact is described. The stresses are calculated using real digitized three-dimensional surface profiles. The effects of the surface roughness and the sliding friction are presented. Using an existing contact simulation code, the digitized surfaces are mathematically pressed together and the real areas of contact and the asperity pressures are calculated. The surfaces are assumed to remain elastic throughout the contact simulation process. The shear forces at the asperity contact interfaces are assumed to be proportional to their calculated normal pressures. The subsurface stresses are then determined with these known normal and tangential forces at the surface.  相似文献   

8.
The progression of local cartilage surface damage toward early stage osteoarthritis (OA) likely depends on the severity of the damage and its impact on the local lubrication and stress distribution in the surrounding tissue. It is difficult to study the local responses using traditional methods; in situ microtribological methods are being pursued here as a means to elucidate the mechanical aspects of OA progression. While decades of research have been dedicated to the macrotribological properties of articular cartilage, the microscale response is unclear. An experimental study of healthy cartilage microtribology was undertaken to assess the physiological relevance of a microscale friction probe. Normal forces were on the order of 50 mN. Sliding speed varied from 0 to 5 mm/s, and two probes radii, 0.8 and 3.2 mm, were used in the study. In situ measurements of the indentation depth into the cartilage enabled calculations of contact area, effective elastic modulus, elastic and fluid normal force contributions, and the interfacial friction coefficient. This work resulted in the following findings: (1) at high sliding speed (V = 1–5 mm/s), the friction coefficient was low (μ = 0.025) and insensitive to probe radius (0.8–3.2 mm) despite the fourfold difference in the resulting contact areas; (2) the contact area was a strong function of the probe radius and sliding speed; (3) the friction coefficient was proportional to contact area when sliding speed varied from 0.05 to 5 mm/s; (4) the fluid load support was greater than 85% for all sliding conditions (0% fluid support when V = 0) and was insensitive to both probe radius and sliding speed. The findings were consistent with the adhesive theory of friction; as speed increased, increased effective hardness reduced the area of solid–solid contact which subsequently reduced the friction force. Where the severity of the sliding conditions dominates the wear and degradation of typical engineering tribomaterials, the results suggest that joint motion is actually beneficial for maintaining low matrix stresses, low contact areas, and effective lubrication for the fluid-saturated porous cartilage tissue. Further, the results demonstrated effective pressurization and lubrication beneath single asperity microscale contacts. With carefully designed experimental conditions, local friction probes can facilitate more fundamental studies of cartilage lubrication, friction and wear, and potentially add important insights into the mechanical mechanisms of OA.  相似文献   

9.
Lubricated “soft” contacts, where one or both contacting solids have a low elastic modulus, are present in many practical engineering and biological applications including windscreen wipers, wet tyres, elastomeric seals, contact lenses and the tongue/palate system. In such contacts, the prevailing lubrication mode is “isoviscous EHL” (elastohydrodynamic lubrication). Unlike in steel–steel contacts, rolling friction can be considerable and this originates in part from the viscoelastic properties of the compliant surfaces.In this paper the influence on friction of both applied load and the elastic properties of the solids is studied using a mini traction machine. In this machine, the rolling and sliding friction can be separately determined. The viscoelastic properties of the polymers employed are measured using a dynamic mechanical analysis apparatus. The measured friction is compared to theoretical models for soft EHL and the viscoelastic energy losses arising from the contact deformation. Consideration of the frequency dependence of the substrate viscoelasticity enables reasonably accurate predictions of the rolling friction coefficient, especially within the mixed and boundary lubrication regimes.  相似文献   

10.
Many tribological contacts involve two components, each exhibiting finite roughness, sliding over one another for many repeated cycles of operation. Although the initial contact may be plastic, if low wear rate conditions are to be achieved, the steady state situation should be one of predominantly elastic stresses in each surface. When lubrication is present, the stress fields in the components must be consistent with the presence of a low shear strength film separating the surfaces. Commercial lubricants invariably contain a chemically complex additive package with one of the aims of the formulation being the production of boundary layers, which beneficially influence both friction and wear when conditions are not conducive to the formation of either a hydrodynamic or an elasto-hydrodynamic film. These boundary layers must be physically robust enough to survive prolonged service but slippery enough to maintain acceptably low coefficients of friction. Reductions in friction are not necessarily synonymous with improvements in anti-wear behaviour. Recent experimental evidence from studies using both atomic force microscopy and micro-tribometry suggest that boundary films produced by the action of commercial anti-wear additives, such as ZDTP, can exhibit mechanical properties which are affected by local values of pressure – the film is tribologically 'smart' becoming more robust just where it is needed at the most heavily loaded points of the conjunction. These effects have been explored in a numerical model of rough surface contact and the implications for the mechanisms of wear of real devices is discussed.  相似文献   

11.
When studying the tribological behaviors of a Cu-based friction pair in different lubrication regimes, calculation of the real contact area of asperity contacts is crucial but difficult. In this work, a mixed lubrication model in plane contacts is developed, and pin-on-disc tests are carried out. The real contact area ratio, load sharing ratio, and friction coefficient are investigated. Effects of sliding velocity, temperature, and pressure are considered. The results show that when the maximum contact area ratio is about 14.6%, the load sharing ratio of asperity contacts is about 95%. The friction coefficient obviously increases from less than 0.04 to about 0.15 as the regime changes from hydrodynamic to boundary lubrication. Asperities have a significant influence on the local lubrication of a Cu-based friction pair, and the action of hydrodynamic pressure cannot be ignored.  相似文献   

12.
本文所提出的关于带在轮系上的横向运动的理论,牵涉到带轮装置的一系列问题。它概括了这些似无联系的问题,使之系统化成为一个较完整的体系,澄清了有关的某些模糊和错误的认识,并为一系列实验所证实。带在轮系上的横向运动,应分为横向移动与横向滑动。两者在其产生的原因、对工作的影响、分析的方法和应采取的措施等方面,都有着根本的区别。横向移动是由于受到摩擦支持的斜缠绕作用而引起的,并且肯定是不平稳的。“装带定律”就是为防止出现斜缠绕。不仅半交叉的而且包括开口的带轮装置在内的各种带轮装置,都必须遵守这一定律。分析横向移动问题时,应从带的应力和变形分析入手,找出带在进入轮时的实际方向,才能最后正确判定带横向移动的趋向。中凸鼓形轮是稳定带的横向位置、防止带从轮上由于斜缠绕而掉落的有效措施。横向运动的另一种形式是横向滑动。横向滑动可以是平稳的,也可以是不平稳的。它是由于带的接触段所受到的横向外力而引起的。横向滑动的存在,会使带轮装置的负载能力与传动效率降低。轮缘挡边可用以防止带从轮上滑落。  相似文献   

13.
胡霞 《润滑与密封》2006,(9):163-164,169
利用原子力显微镜等手段研究几种类金刚石薄膜的力学和微观摩擦性能以及二者之间的关系,并从理论上建立关联模型。结果表明,在界面剪切强度和无磨损摩擦的前提下,硬质保护薄膜的微观摩擦因数与其弹性模量的倒数有直接的关系,从而可以通过测定弹性模量来直接预测其微摩擦因数。  相似文献   

14.
The nanotribological properties of amorphous carbon (a-C) films of thickness in the range of 5-85 nm sputtered on Si(1 0 0) substrates were investigated with a surface force microscope (SFM), using a Berkovich diamond tip of nominal radius of curvature approximately equal to 200 nm and contact (normal) loads between 10 and 1200 μN. The dependence of the friction and wear behaviors of the a-C films on normal load and film thickness was studied in terms of nanomechanical properties, images of scratched surfaces, and numerical results obtained from a previous analytical friction model. The increase of the contact load caused the coefficient of friction to decrease initially to a minimum value and, subsequently, to increase to a maximum value, after which, it either remained constant or decreased slightly. The dominant friction mechanism in the low-load range was adhesion, while both adhesion and plowing mechanisms contributed to the friction behavior in the intermediate- and high-load ranges. Thinner (thicker) a-C films yielded higher (lower) friction coefficients for normal loads less than 50 μN (low-load range) and lower (higher) friction coefficients for normal loads greater than 150 μN (high-load range). Elastic and plastic deformation, microcracking, and delamination of the a-C films occurred, depending on the contact load and film thickness ranges. The reduced load-carrying capacity, relatively low effective hardness (strength) obtained with thinner films, and dominant friction and wear mechanisms at each load range illustrate the film thickness and contact load dependence of the nanotribological properties of the sputtered a-C films.  相似文献   

15.
K. Mao  Y. Sun  T. Bell 《摩擦学汇刊》2013,56(2):416-424
A numerical model for the two-dimensional dry sliding contact of two elastic bodies with real rough surfaces has been developed, where an elastic body contacts with a multi-layer surface under both normal and tangential forces. The model uses surface profile data directly recorded with a stylus measuring instrument and it is suitable for use on a microcomputer. Green's function for a unit normal load and a unit tangential load for the generalized plane strain problem are derived. Verification of the accuracy of the model by reproduction of test case results is presented. Contact pressure distribution for layers of varying coefficient of friction, thickness and elastic modulus is analyzed.  相似文献   

16.
Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces.  相似文献   

17.
K. Yamada  N. Takeda  J. Kagami  T. Naoi 《Wear》1978,48(1):15-34
The mechanisms of elastic contact and friction between two rough surfaces were analysed, assuming that the surface asperities were spherical, at least near their summits, and that they contacted elastically. It was found that the real contact area and the number of contact spots are approximately proportional to the load, whereas the mean area of contact spots and the mean pressure at the contact areas are almost independent of load. The frictional force F is almost equal to sAr, where s is the shearing strength at the contact area and Ar is the real contact area. The experimental results using Pyrex glass specimens agreed within experimental limits with the theoretical results.  相似文献   

18.
In this review, we discuss the current knowledge on the tribology of human skin and present an analysis of the available experimental results for skin friction coefficients. Starting with an overview on the factors influencing the friction behaviour of skin, we discuss the up-to-date existing experimental data and compare the results for different anatomical skin areas and friction measurement techniques. For this purpose, we also estimated and analysed skin contact pressures applied during the various friction measurements. The detailed analyses show that substantial variations are a characteristic feature of friction coefficients measured for skin and that differences in skin hydration are the main cause thereof, followed by the influences of surface and material properties of the contacting materials. When the friction coefficients of skin are plotted as a function of the contact pressure, the majority of the literature data scatter over a wide range that can be explained by the adhesion friction model. The case of dry skin is reflected by relatively low and pressure-independent friction coefficients (greater than 0.2 and typically around 0.5), comparable to the dry friction of solids with rough surfaces. In contrast, the case of moist or wet skin is characterised by significantly higher (typically >1) friction coefficients that increase strongly with decreasing contact pressure and are essentially determined by the mechanical shear properties of wet skin. In several studies, effects of skin deformation mechanisms contributing to the total friction are evident from friction coefficients increasing with contact pressure. However, the corresponding friction coefficients still lie within the range delimited by the adhesion friction model. Further research effort towards the analysis of the microscopic contact area and mechanical properties of the upper skin layers is needed to improve our so far limited understanding of the complex tribological behaviour of human skin.  相似文献   

19.
A shear instability criterion can provide a consistent approach to the onset of local necking in sheet metal forming under biaxial stretching. The neck is anticipated to initiate in the direction of pure shear when the shear stress attains some critical value. The yield function proposed by Hill is employed and the material is assumed to display only normal anisotropy. Empirically it is found that the additional material parameter required by this yield function is simply related to R, the coefficient of normal anisotropy, for a number of materials. This allows the limit strain to be predicted in terms of three well established plastic properties, viz. work hardening coefficient, coefficient of normal anisotropy and initial pre-strain. The influence of these on the limit strain curve is analysed and the coefficient of work hardening shown to play the most important role. Data available in the literature are employed in a comparison of the present theory with that due to Marciniak. In general the predicted limit strains are in reasonable agreement with the trend of experimental results for a wide range of materials. In the case of isotropic materials with work hardening coefficients in the range 0·2-0·6 predictions from the present theory are almost identical with those from that presented by Stören and Rice. The theory presented here exhibits a good correlation with experimental limit strains for materials with high work hardening coefficients, of approx. 0·4 or more. Generally, for low work hardening materials, with coefficients of 0·25 or less, the shear instability theory tends to an underestimate of limit strains and a Marciniak type of analysis may be more appropriate. However, bearing in mind the scatter of the experimental data the present theory constitutes a safe lower bound on limit strains and, in addition, has the advantage of simplicity in the mathematical calculation required.  相似文献   

20.
A temperature analysis of dry sliding fully plastic contact is extended to calculate the asperity temperatures between a sliding lubricated rigid smooth plane and a stationary elastic rough surface. First, surface roughness is generated numerically to have a Gaussian height distribution and a bilinear autocorrelation function. Lai and Cheng's elastic rough contact computer program is then used to determine the asperity contact loads and geometries of real contact areas. Assuming different frictional coefficients for shearing the lubricant film at the noncontact areas, shearing the surface film at the asperity contacts and shearing the oxide film as the asperity temperature exceeds a critical temperature, asperity temperature distributions can be calculated. Eight cases in Durkee and Cheng's scuffing tests of lubricated simple sliding rough contacts are simulated by using 20 computer-generated rough surfaces. The results show that scuffing is correlated to high-temperature asperities which are above the material-softening temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号