首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于GPU加速的深度图像绘制   总被引:1,自引:0,他引:1  
郑专  安平  张秋闻  张兆杨 《电视技术》2012,36(11):11-14,26
基于深度图像的绘制(DIBR)广泛应用于虚拟视点的合成,但是目前实现DIBR的算法复杂度都比较高,很难较实时地应用到3DTV系统中。采用单路纹理图像和其对应的深度图像进行虚拟视点的合成,在图形处理单元(GPU)上应用CUDA(Compute Unified Device Architecture)技术实现了基于深度图像的绘制。通过在NVIDIA Telsa C2050图形卡上运行,绘制分辨力1 024×768和640×480的图像速率分别达到了15 f/s(帧/秒)和24 f/s,分别能够准实时或实时地应用到3DTV系统中;同时本文的绘制方法有效地节约了传输带宽,绘制图像的主观质量良好。  相似文献   

2.
张聪  邢同举  罗颖  张静  孙强 《电子设计工程》2011,19(19):141-143,146
数学形态学运算是一种高度并行的运算,其计算量大而又如此广泛地应用于对实时性要求较高的诸多重要领域。为了提高数学形态学运算的速度,提出了一种基于CUDA架构的GPU并行数学形态学运算。文章详细描述了GPU硬件架构和CUDA编程模型,并给出了GPU腐蚀并行运算的详细实现过程以及编程过程中为充分利用GPU资源所需要注意的具体问题。实验结果表明,GPU并行数学形态学运算速度可达到几个数量级的提高。  相似文献   

3.
在地基太阳观测中,光线在穿越大气层时会受到大气湍流的影响而导致图像扭曲、变形以致质量下降。为了消除或降 低大气湍流的影响,事后图像处理技术被用来获得高分辨力的太阳图像。基于斑点干涉法和斑点掩模的事后重建算 法可以获得高分辨力的图像,但由于计算复杂度高,难以满足实时性的要求。在讨论了算法原理的基础上, 使用CUDA并行计算架构实现了太阳斑点重建算法并行化。实验结果表明,在GPU环境下,一张TiO通 道2304 pixel$\times$1984 pixel像素大小的图像,可以在70 s内完成重建,相比运行在CPU上的串行程序,加速比可达7以上。  相似文献   

4.
协议特征识别技术中用到了一种重要的LCS算法,它是一种字符串比对算法,提取出字符串中的最长连续公共子串。然而,通过理论分析和实验表明:这个查找过程是一个时间复杂度较高的运算过程,如果输入的数据分组比较大,那么运行的时间将会非常长,为此不得不控制输入数据分组的大小和数量,这严重限制了所采用样本集的大小。提出了基于GPU对LCS运算实现加速的方法。在此基础上搭建和配置了CUDA平台,在此平台下研究并实现了LCS算法的并行性。通过对LCS算法在CUDA下并行性的研究,有效地加快了LCS算法的运行速度。实验结果表明,GPU下LCS算法的运行效率比CPU有了显著的提高。  相似文献   

5.
韩秉君  黄诗铭  杜滢 《电信科学》2015,31(10):82-88
提出了一种在 Kepler 架构 GPU(graphics processing unit,图形处理器)上利用 CUDA(compute unified device architecture,统一计算设备架构)技术加速通信仿真中DFT(discrete Fourier transform,离散傅里叶变换)处理过程的方法。该方法的核心思想是利用线程级并行技术实现单条收发链路内部DFT运算的并行加速,并利用动态并行和Hyper-Q技术实现不同收发用户对之间链路处理过程的并行加速,从而最终达到加速仿真中DFT处理过程的目的。实验结果表明,相对单核单线程CPU程序和上一代Fermi架构GPU程序,该方法分别能够将DFT处理速度提升300倍和3倍,具有较好的加速效果。  相似文献   

6.
詹洪陈  袁杰 《现代电子技术》2012,35(20):87-90,94
通过Matlab和Visual C++两个平台,实现了对图像工程的并行加速处理,并且通过Jacket,CUDA两种加速方案的介绍,进一步了解使用GPU高性能并行计算的工作流程以及性能效益。最后,给出了通过并行处理之后的关于两个图像工程计算性能的测试结果及比对。结果证明,经并行处理后的图像工程在计算效率方面有显著提高,结果精确,计算耗时小。  相似文献   

7.
唐斌  龙文 《液晶与显示》2016,31(7):714-720
本文提出一种基于GPU+CPU的快速实现Canny算子的方法。首先将算子分为串行和并行两部分,高斯滤波、梯度幅值和方向计算、非极大值抑制和双阈值处理在GPU中完成,将二维高斯滤波分解为水平方向上和垂直方向上的两次一维滤波从而降低计算的复杂度;然后使用CUDA编程完成多线程并行计算以加快计算速度;最后使用共享存储器隐藏线程访问全局存储的延迟;在CPU中则使用队列FIFO完成边缘连接。仿真测试结果表明:对分辨率为1024×1024的8位图像的处理时间为122 ms,相对应单独使用CPU而言,加速比最高可达5.39倍,因此本文方法充分利用了GPU的并行性的特征和CPU的串行处理能力。  相似文献   

8.
基于 GPU 加速的并行字符串匹配算法   总被引:1,自引:0,他引:1  
在分析了经典的串行字符串匹配算法(BF ,KMP ,BM ,BDM ,Shift -And/Shift -Or ,ZZL)基础上,对ZZL算法的预处理过程进行改进,并结合GPU的单指令多线程的并行计算特点,对ZZL算法进行并行改进,以达到处理大规模数据的速度提升。  相似文献   

9.
针对现有的离散小波变换耗时久的问题,本文利用CUDA并行计算技术,提出了一种基于GPU的离散小波变换算法实验结果表明在一张2048×2048分辨率的图像中达到了最大106.34的加速比,而且保持了良好的效果。  相似文献   

10.
针对在计算3D集成成像过程中耗时较多的问题,采用了一种新的硬件加速方法——GPU加速,分别在不同透镜数目和三维物体复杂度下,对CPU和GPU的运算时间进行对比。结果表明:计算复杂度大于数据拷贝时间时,GPU的整体加速效果明显,并且随着计算复杂度的提高,加速效果越来越显著。  相似文献   

11.
如何提高时域有限差分算法(FDTD)的运算效率一直是FDTD数值运算研究的核心问题之一。针对近年来图形处理器(GPU)运算能力的高速增长及GPU通用运算概念提出的背景,对GPU加速FDTD运算的潜力与研究现状进行了总结,并对GPU加速FDTD运算的并行实现原理进行了阐述,通过将其与其他典型硬件加速方式进行比较,指出了GPU加速具有低成本易于开发移植等特点。通过GPU加速FDTD的实例运算,初步验证了GPU运算的可行性与高速性,证实了GPU加速运算FDTD运算存在广阔应用的前景,并对现有问题进行了总结。  相似文献   

12.
由于稳定性条件的要求和采用Yee 元胞体离散的方式求解Maxwell 方程,用FDTD 计算目标电磁散射时需要 消耗大量的计算资源,计算往往需要较长时间。采用并行技术是提高计算效率的有效途径,本文基于计算统一架构 CUDA 模型,给出了利用图形处理器(GPU)实现二维FDTD 并行计算的实现方法。给出了二维Mur 边界和PEC 边界 的数值算例,计算结果表明,采用GPU 计算大大的提高了计算效率。  相似文献   

13.
张娜  王黎明  刘宾 《红外》2009,30(3):22-25
针对工业检测中用传统的降噪方法难于进行实时处理的问题,提出了一种基于图形处理器(GPU)加速的动态降噪方法.借助于显卡中图形处理器较强的运算能力,利用CUDA并行计算架构在PC机上实现了图像的动态降噪.此方法用软件实现,可大大提高处理速度,降低成本,易于修改.实验结果表明,该方法具有较好的实时性和去噪效果.  相似文献   

14.
文中提出了一种声发射波振动加速度测量系统。系统中利用分布式高性能光纤光栅 振动加速度测量探头,采用连续波调频、波分复用、时分复用技术,并设计光学小波滤波器,有效地改善非平衡、非线性光学信号的干扰,从而实现声发射波振动加速度的分布测量。加速度测量范围为4. 3m/ s2~340m/ s2 ;频响范围为准静态~1000Hz ;分辨率为7. 5 ×10 - 7nm/ Hz 。  相似文献   

15.
商凯  胡艳 《电子技术》2011,38(5):9-11
近几年图形处理器GPU的通用计算能力发展迅速,现在已经发展成为具有巨大并行运算能力的多核处理器,而CUDA架构的推出突破了传统GPU开发方式的束缚,把GPU巨大的通用计算能力解放了出来.本文利用GPU来加速AES算法,即利用GPU作为CPU的协处理器,将AES算法在GPU上实现,以提高计算的吞吐量.最后在GPU和CPU...  相似文献   

16.
矩量法(MOM)在求解电磁场散射问题时,当未知量数目比较大时,其内存占用和计算时间非常大.基于最佳一致逼近理论构造了高阶矩量法,并引入了计算统一设备架构(CUDA)技术,在图形处理器(GPU)上实现了并行加速计算二维电磁散射问题.实例结果表明,在与快速多极子算法(FMM)相对比下,该方法在较低剖分的情况下,具有很高的计算精度,并且在阻抗矩阵填充和矩矢相乘时的速度大大提升,适用于电大尺寸目标的散射问题.  相似文献   

17.
CT数据的获取过程和CT图像的重建过程与图形学的渲染过程极其相似,因此利用图形处理器(GPU)来加速CT重建算法成为了近年来CT研究的热点之一.本文根据单层螺旋CT数据的特点,构造了"平行-扇束"投影模式,实现了基于GPU的单层螺旋CT的三维图像重建算法.数值实验表明,与CPU上的分层重建相比重建速度提高10倍以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号