首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用分离式Hopkinson压杆和反射式拉杆装置在室温对挤压态AZ31B镁合金进行了动态压缩和拉伸试验,分析了AZ31B镁合金沿挤压方向压缩和拉伸时的不对称性和应变速率敏感性.结果表明:沿挤压方向压缩时,拉伸孪晶{1012}<1120>首先启动,屈服强度对应变速率不敏感;沿挤压方向拉伸时,拉伸孪晶不能启动,位错滑移参与变形,应变速率敏感性有所提高;由于拉伸孪晶只能单向启动,AZ31B镁合金在挤压方向的动态拉压不对称性显著.  相似文献   

2.
为了研究挤压态AZ31B镁合金在高应变速率下的拉压不对称性,对挤压态AZ31B镁合金进行了织构分析.采用分离式Hopkinson压杆和反射式拉杆装置分别沿挤压方向和垂直挤压方向进行了动态压缩和拉伸试验,应变速率范围在500~2650 s-1之间.结果表明,由于在挤压过程中形成了基面织构,沿挤压方向压缩时,拉伸孪晶{1012}<1120>容易启动,屈服强度对应变速率不敏感,且屈服强度较低;沿挤压方向拉伸时,拉伸孪晶不能启动,压缩孪晶{1011}<1120>和非基面滑移是其主要的塑性变形机制,合金屈服强度较高;合金在压缩和拉伸时表现出很强的拉压不对称性,压缩屈服强度与屈服强度的比值约为0.30.垂直于挤压方向拉伸和压缩时,没有表现出拉压不对称性.  相似文献   

3.
在考虑滑移和孪生两大塑性变形机制的基础上,通过修正的粘塑性自洽(VPSC)模型,模拟挤压态AZ31镁合金轴向拉-压过程中的力学行为及微观组织。结合EBSD实验与模拟,分析了不同变形机制对初始挤压态丝织构镁合金产生拉压不对称的机理以及塑性变形过程中的微观组织。结果表明,轴向拉伸变形初期以基面滑移系为主,由于基面滑移的施密特因子较低,导致屈服应力较高;随着应变的增加,棱柱面滑移成为主导变形机制,应变硬化率降低,应力-应变曲线较平稳;轴向压缩变形初期,临界剪切应力较低的拉伸孪晶大量开启导致屈服应力较低;随着拉伸孪晶相对活性的快速降低,应变硬化率迅速提高;轴向压缩后期,随着应力的持续升高,压缩孪晶开始启动,塑性变形积累的应力得到释放,导致应变硬化率降低。另外,从典型晶粒的颜色和孪晶迹线方面解释了沿ED方向压缩时孪晶体积分数较小的原因。  相似文献   

4.
采用分离式霍普金森拉杆及压杆装置,研究挤压态AZ31镁合金高速变形下的各向异性及拉压不对称性,并从微观变形机制的角度探讨具有强烈初始基面织构的挤压态镁合金各向异性及拉压不对称性产生的原因。结果表明:在高速变形条件下,依据加载方向及应力状态挤压态AZ31镁合金的拉伸行为表现出很强的各向异性,但压缩行为的各向异性不明显;在挤压方向表现出很强的拉压不对称性,而在垂直于挤压方向的拉压不对称性很低。挤压态AZ31镁合金宏观上的各向异性及拉压不对称性是由于不同的微观变形机制所引起的。沿挤压方向拉伸的主要变形机制为柱面滑移,沿垂直于挤压方向拉伸及压缩的主要变形机制为锥面滑移;沿挤压方向压缩时初始变形机制为拉伸孪晶,当变形量为0.08(8%)左右时由于孪晶消耗殆尽,变形变而以滑移的方式进行。  相似文献   

5.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

6.
等通道角挤压变形AZ31镁合金的变形行为   总被引:6,自引:2,他引:4  
研究挤压态和等通道角挤压(EcAE)态AZ31镁合金的变形行为与微观组织的相关性.结果表明,ECAE态AZ31镁合金的室温拉伸屈服强度与晶粒尺寸之间表现出反Hall-Petch关系,且拉压不对称性明显减弱;在室温压缩时表现出应变速率敏感性,并随变形温度升高,应变速率敏感性因子变大.挤压态合金的晶粒度为20 μm,具有典型的挤压丝织构,主要变形方式为基面位错滑移和孪生,导致了合金中明显的拉压不对称性.ECAE态合金平均品粒尺寸约为2μm,织构相对随机化,导致合金压缩时孪生比率明显下降,其他变形模式比率增加,提高了变形抗力,降低了拉压不对称性.ECAE态AZ31镁合金压缩的激活能接近其晶界扩散激活能,晶界滑移在一定程度上导致了合金的反Hall-Peteh关系的出现以及应变速率敏感性的增强.  相似文献   

7.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

8.
采用分离式霍普金森压杆(SHPB)测试预孪晶AZ31镁合金板材在应变速率分别约为800、1200和1600 s-1时的动态真应力-真应变曲线.通过自编程软件及电子背散射衍射(EBSD)技术分析预孪晶试样在高应变速率前后微观组织和织构的演变.结果表明:沿横向(TD)预压缩后再沿着轧制方向(RD)复合预压缩可促进AZ31镁...  相似文献   

9.
AZ91D镁合金单向压缩条件下的变形组织   总被引:1,自引:1,他引:0  
采用Gleeble-1500热/力耦合模拟试验机对AZ91D镁合金在100~400℃,应变速率在0.005~5 s-1条件下的单向压缩变形行为进行了研究,利用光学显微镜和透射电子显微镜观察分析不同变形条件下的显微组织.结果表明:在较低温度(100℃)下,应力随着应变的增加逐渐增大,直至断裂;而在变形温度高于200℃时,其压缩流变应力均呈现典型的动态再结晶特征.AZ91D合金在低温区域变形时,孪晶是主要的变形形式;在中温区域,由位错滑移和连续动态再结晶协调变形;到高温区域,主要由位错滑移和连续、非连续动态再结晶一起协调变形.  相似文献   

10.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号