首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

2.
采用分离式霍普金森拉杆及压杆装置,研究挤压态AZ31镁合金高速变形下的各向异性及拉压不对称性,并从微观变形机制的角度探讨具有强烈初始基面织构的挤压态镁合金各向异性及拉压不对称性产生的原因。结果表明:在高速变形条件下,依据加载方向及应力状态挤压态AZ31镁合金的拉伸行为表现出很强的各向异性,但压缩行为的各向异性不明显;在挤压方向表现出很强的拉压不对称性,而在垂直于挤压方向的拉压不对称性很低。挤压态AZ31镁合金宏观上的各向异性及拉压不对称性是由于不同的微观变形机制所引起的。沿挤压方向拉伸的主要变形机制为柱面滑移,沿垂直于挤压方向拉伸及压缩的主要变形机制为锥面滑移;沿挤压方向压缩时初始变形机制为拉伸孪晶,当变形量为0.08(8%)左右时由于孪晶消耗殆尽,变形变而以滑移的方式进行。  相似文献   

3.
采用分离式Hopkinson压杆装置测试研究了挤压态AZ31B镁合金的动态压缩断裂行为,用光学显微镜和扫描电镜观察分析了AZ31B镁合金的动态压缩断口形貌.结果表明,AZ31B镁合金沿挤压方向压缩时,断口形貌呈韧-脆混合的断裂特征,裂纹经多级萌生和扩展,最终导致断裂,宏观断裂面与压缩方向成45°角,为典型的剪切破坏.  相似文献   

4.
在250-400℃的温度范围和0.1-50 s^-1的应变速率范围内对ZK60合金进行压缩变形,对其流变行为和显微组织进行研究。结果表明,在低应变速率(0.1-1 s^-1)下压缩变形时,再结晶主要发生在初始晶界上;在高应变速率(10-50 s^-1)下压缩变形时,再结晶同时在初始晶界和孪晶上发生。合金在应变速率10-50 s^-1和温度250-350℃的变形条件下获得均匀、细小的再结晶组织。因此,合金的最佳热加工工艺范围为应变速率10-50 s^-1、变形温度250-350℃。高应变速率压缩变形条件下的孪生诱发动态再结晶过程分三步,首先,高位错密度孪晶分割初始晶粒;然后,孪晶内的位错发生重排形成亚晶;最后,随着应变的增加而形成再结晶晶粒。  相似文献   

5.
AZ31镁合金高应变速率多向锻造组织演变及力学性能   总被引:1,自引:0,他引:1  
采用空气锤对AZ31合金在350℃以Δε=0.22的道次应变量进行1~12道次多向锻造变形,并对其组织和性能进行测试。结果表明:合金高应变速率多向锻造(HSRTF)组织演变分为两个阶段,累积应变∑Δε<1.32时为晶粒细化阶段,其主要机制为孪晶再结晶;累积应变∑Δε>1.32时为晶粒长大阶段,其主要机制为热激活长大。利用大量的孪晶对再结晶的促进作用,高应变速率多向锻造工艺可快速生产细晶粒高性能AZ31变形镁合金锭坯,累积应变∑Δε=1.32时,可获得组织均匀、平均晶粒度为7.4μm的锻坯,其抗拉强度、屈服强度和伸长率分别为313 MPa、209 MPa和28.6%。  相似文献   

6.
采用分离式霍普金森压杆(SHPB)测试预孪晶AZ31镁合金板材在应变速率分别约为800、1200和1600 s-1时的动态真应力-真应变曲线.通过自编程软件及电子背散射衍射(EBSD)技术分析预孪晶试样在高应变速率前后微观组织和织构的演变.结果表明:沿横向(TD)预压缩后再沿着轧制方向(RD)复合预压缩可促进AZ31镁...  相似文献   

7.
在250~400°C的温度范围和0.1-50 s-1的应变速率范围内对ZK60合金进行压缩变形,对其流变行为和显微组织进行研究。结果表明,在低应变速率(0.1~1 s-1)下压缩变形时,再结晶主要发生在初始晶界上;在高应变速率(10~50 s-1)下压缩变形时,再结晶同时在初始晶界和孪晶上发生。合金在应变速率10~50 s-1和温度250~350°C的变形条件下获得均匀、细小的再结晶组织。因此,合金的最佳热加工工艺范围为应变速率10~50 s-1、变形温度250~350°C。高应变速率压缩变形条件下的孪生诱发动态再结晶过程分三步,首先,高位错密度孪晶分割初始晶粒;然后,孪晶内的位错发生重排形成亚晶;最后,随着应变的增加而形成再结晶晶粒。  相似文献   

8.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

9.
利用Geeble1500热模拟实验机对双辊连续铸轧AZ31B镁板在变形温度为100℃,应变速率为10-3s-1的条件下进行单轴压缩变形,并利用金相显微镜和透射电子显微镜对其微观组织进行观察。结果表明:在上述的条件下变形时,合金中产生大量的孪晶,孪晶与孪晶之间相互交截,在孪晶界及孪晶交截区出现大量的位错,并且有动态再结晶核心及再结晶小晶粒,说明该合金中动态再结晶形核位置主要为孪晶界及孪晶-孪晶交截区。  相似文献   

10.
AZ31镁合金高应变速率轧制边裂及力学性能各向异性   总被引:1,自引:0,他引:1       下载免费PDF全文
在300~400 ℃对铸态AZ31镁合金进行平均应变速率为10~29 s-1的高应变速率轧制,研究轧制后镁板边裂、组织及力学性能的各向异性。结果表明:随着平均应变速率的增加,轧制边裂得到改善,350 ℃和400 ℃下边裂长度变化相比300 ℃时更加平缓;晶粒尺寸在温升和应变速率综合作用下并不随平均应变速率的增加而减小,反而出现波动;在相对较低的应变速率下,由于组织中长条形晶粒的存在,导致板材的各向异性明显;随着平均应变速率的增加,长条形晶粒减少,再结晶完全,组织趋于均匀,轧板的各向异性得到改善;轧板拉伸断口中可观察到撕裂棱和韧窝,以韧性断裂方式为主。  相似文献   

11.
The twinning and slip activities of AZ31 magnesium alloy sheet at a strain rate of 1 200 s^-1 were investigated. Dynamically mechanical properties of various oriented samples were measured using Split Hopkinson Pressure Bar(SHPB). Optical microscope observations reveal that the dominant deformation mechanism is twinning for 90° oriented sample, and is slip for 45° and 0° oriented samples. TEM analysis for samples at a strain of 0.3% shows that the main deformation mechanisms for 90°, 45° and 0° oriented sample are {1012} 〈 1011 〉 and {1011} 〈 1012 〉 twinning, basal slip and non basal slip, respectively. The main features of the true stress--true strain curves can be explained based on deformation mechanism analysis.  相似文献   

12.
The effects of strain rate on microstructure and formability of AZ31B magnesium alloy sheets were investigated through uniaxial tensile tests and hemispherical punch tests with strain rates of 10?4, 10?3, 10?2, 10?1 s?1 at 200 °C. The results show that the volume fraction of dynamic recrystallization grains increases and the original grains are gradually replaced by recrystallization grains with the strain rate decreasing. A larger elongation and a smaller r-value are obtained at a lower strain rate, moreover the erichsen values become larger with the strain rate reducing, so the formability improves. This problem arises in part from the enhanced softening and the coordination of recrystallization grains during deformation.  相似文献   

13.
在350℃对AZ31镁合金进行了高温压缩实验,研究了合金在压缩变形过程中的显徽组织演变.结果表明:不同变形区的组织变化并不一致.在压缩变形过程中,随着变形量的增大,晶粒适渐细化且趋于均匀.  相似文献   

14.
The deformation behavior of AZ31 Mg alloy is studied here in relation to the temperature. A rolled plate with a thickness of 50 mm was first homogenized at 400 °C for 4 h before preparing test specimens with the tensile axis parallel to the rolling direction (RD). A series of tensile tests was then carried out at a strain rate of 10−2/s together with load relaxation tests to obtain flow curves in terms of the stress and strain rate at room temperature (RT), 100 °C, 200 °C, and 300 °C. The flow curves were found to represent the usual grain matrix deformation (GMD) behavior, consisting of the accumulation and relaxation of glide dislocations at temperatures of less than 100 °C. At temperatures greater than 200 °C, grain boundary sliding (GBS) was found to play an important role, as described in theories related to an internal variable. The GBS could be characterized as a non-Newtonian viscous flow with a power index value of M g = 0.5.  相似文献   

15.
AZ31B镁合金薄板热拉伸显微组织试验研究   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟试验机、金相显微镜和扫描电镜,研究AZ31B镁合金在不同变形条件下的微观组织和断口形貌特点,并且研究了该合金在不同变形条件下的变形机理。结果表明,AZ31B镁合金在温度200℃以下时,不会发生动态再结晶,其机理主要为晶内变形。当变形温度达到200℃,在较高的应变速率时,原始晶粒仍然存在,且被拉长,此时的变形机理应为晶内变形;而在应变速率较低时,原始晶粒的晶界变为锯齿形,出现了极小的再结晶晶粒。当变形温度达到300℃时,在较高的应变速率下,发生了不充分的再结晶,部分原始晶粒仍然存在,且被拉长;而在应变速率较低时,再结晶充分进行,且晶粒有长大的趋势。在较低的应变速率时,随着温度的升高,断口由无韧窝或者韧窝浅而少的特征,逐渐发展为典型的延性韧窝聚合型断裂的特征,在高温时,甚至发展为沿晶断裂模式;在变形温度为200℃和300℃时,随着应变速率的增大,沿晶断裂形貌消失,韧窝聚合型延性断裂逐渐受到抑制,最后在较高的应变速率时,断口呈现出解理这一晶内断裂的典型特征。  相似文献   

16.
采用X射线衍射、断口扫描、金相观察、应力-应变曲线等分析手段,通过对AZ31镁合金挤压板材在室温下的平面应变试验,研究了不同受力方式和不同变形速度对孪生产生的影响。结果表明,N向拉伸变形以{1012}孪生为主;N向压缩变形仅在变形末期在少量具有有利取向的晶粒内发生孪生;N向限制变形中,变形初期发生{1012}孪生变形,随着变形程度的增加,孪生停止。变形速度影响孪晶的形核和长大。当主要变形机制为孪生时,变形速度越慢,越有利于孪晶的形核与长大,提高材料的强度和塑性。  相似文献   

17.
通过热压缩实验研究AZ31镁合金挤压杆料在变形温度300、400和500℃,应变速率0.1、0.01和0.001s-1条件下的流变行为,基于Arrhenius方程建立流变应力的本构模型,其中激活能Q为132.45 kJ/mol,应变硬化系数n为4.67。依据AZ31镁合金高温变形中的动态再结晶(Dynamic recrystallization,DRX)机理和位错密度演化规律,建立宏观变形-微观组织多尺度耦合的位错密度模型,该模型能够反映热加工过程中的加工硬化、动态回复(Dynamic recovery,DRV)、低角晶界(Low angle grain boundaries,LAGB)和高角晶界(High angle grain boundaries,HAGB)等机制的交互作用。利用ABAQUS的VUSDFLD子程序进行热压缩过程的有限元模拟,获得DRX分数、LAGB和HAGB位错密度的数值模拟结果以及压缩载荷。结果表明:实验载荷与模拟结果基本吻合,本文提出的AZ31镁合金位错密度模型是合理的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号