首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
传统Web信息抽取的隐马尔可夫模型对初值十分敏感和在实际训练中极易得到局部最优模型参数。提出了一种使用遗传算法优化HMM模型参数的Web信息抽取混合算法。该算法使用实数矩阵编码表示染色体,似然概率值为适应度取值,将GA与Baum-Welch算法相结合对HMM模型参数进行全局优化,并且调整GA-HMM的Baum-Welch算法参数实现Web信息抽取。实验结果表明,新的算法在精确度和召回率指标上比传统HMM具有更好的性能。  相似文献   

2.
序列的多重比对是生物序列分析研究中的一个重要内容.基于免疫系统的疫苗接种和受体编辑模型,结合粒子群优化方法提出了一种免疫粒子群优化算法,将该算法用于隐马尔可夫模型的学习过程,进而构建了一种基于隐马尔可夫模型和免疫粒子群优化的多序列比对算法,从BAliBASE比对数据库中选取了一些比对例子进行了模拟计算,并与Baum-Welch算法进行了比较.结果表明,所提出的方法不仅提高了比对的准确程度,而且缩减了比对所花费的时间。  相似文献   

3.
研究Web文档服务的准确性和快速性,网络信息抽取成为处理海量网络信息的重要手段,而大量异构信息的有效抽取是非常困难的,为了改进和提高系统对于海量异构网页信息的抽取查全率和查准率,提出了一种新的信息抽取的方法,算法利用了隐马尔可夫模型在处理规则知识上的优势对每个页面构建HTML树,并利用Shannon熵来定位数据域,再用Maxi-mum Likelihood方法实现隐马尔可夫模型的构建,实现对Web信息的抽取。仿真结果表明,通过对大量学术论文头部结构信息的抽取,应用算法可以使信息抽取在召回率和准确率方面有明显的提高。  相似文献   

4.
研究一种关于隐马尔可夫模型的多序列比对,利用值和特征序列的保守性,通过增加频率因子,改进传统隐马尔可夫模型算法的不足。实验表明,新算法不但提高了模型的稳定性,而且应用于蛋白质家族识别,平均识别率比传统隐马尔可夫算法提高了3.3个百分点。  相似文献   

5.
提出一种改进的基于隐马尔可夫模型的人脸识别方法。利用人脸隐马尔可夫模型的结构特征和Viterbi算法的特点,对特征观察序列进行分割,使用部分序列对所有隐马尔可夫模型递进地计算最大相似度,同时排除相似度最小的隐马尔可夫模型,减少观察序列的计算次数,提高识别效率。实验结果表明,该方法能在不降低识别率的情况下,有效提高识别速度。  相似文献   

6.
噪声功率谱估计是语音增强算法的基本组成部分,传统算法大多采用启发式的估计方法,因而不能保证噪声估计值的统计最优。提出了一种基于极大似然的非监督噪声功率谱估计方法,采用隐马尔可夫模型(Hidden Markov model, HMM)在每个子带建立语音和非语音对数功率谱的统计模型,模型包含语音和非语音两个高斯分量,其中非语音高斯分量的均值表示噪声功率谱估计值,根据最大期望(Expectation maximization, EM)算法得到包括噪声均值在内的HMM参数集。针对语音信号可能出现的长时缺失,对HMM引入了一些约束条件,保证了模型的稳定性。实验表明,该方法获得的极大似然噪声估计优于基于启发式的经典方法获得的噪声估计。  相似文献   

7.
随着用户对于数据挖掘的精确度与准确度要求的日益提高,马尔可夫模型与隐马尔可夫模型被广泛用于数据挖掘领域。本文阐述了马尔可夫模型和隐马尔可夫模型数据挖掘领域的应用,以及隐马尔可夫模型可解决的问题,以供其他研究者借鉴。  相似文献   

8.
基于连续隐马尔可夫模型的人脸识别方法   总被引:1,自引:0,他引:1  
提出了一种基于连续隐马尔可夫模型的人脸图像识别方法,主要内容包括以下方面:①由于奇异值向量具有稳定性.转置不变性等特点,对归一化的人脸图像,采用奇异值分解抽取人脸图像特征作为观察值序列;②在人脸识别中应用连续隐马尔可夫模型,采用双高斯概率密度函数训练,建立HMM模型,再利用建好的HMM模型进行识别.实验结果显示,所提出的方法减少了数据计算量,运行速度快,并提高了识别率,完全满足人脸识别系统实时性要求.  相似文献   

9.
随着用户对于数据挖掘的精确度与准确度要求的日益提高,马尔可夫模型与隐马尔可夫模型被广泛用于数据挖掘领域。本文阐述了马尔可夫模型和隐马尔可夫模型数据挖掘领域的应用,以及隐马尔可夫模型可解决的问题,以供其他研究者借鉴。  相似文献   

10.
针对用BaumWelch算法训练隐马尔可夫模型用于序列比对算法的搜索空间有限性容易陷入局部最优点的缺陷,提出一种用量子粒子群优化算法训练隐马尔可夫模型的生物多序列比对新方法。该方法克服了BaumWelch算法在收敛性能上的缺陷,在整个可行解空间中进行搜索。从BaliBASE数据库中选取测试例子进行数值实验,实验结果表明,所提算法优于BaumWelch算法,对标准例子进行的实验证明了算法的有效性。  相似文献   

11.
提出了一种用于动态序列合成的统计模型-基于核密度估计的隐马尔可夫模型,给定一个输入动态序列,该模型可以自动产生被控的输出动态序列,文中提出的模型是一种以非参数化概率密度估计作为观测模型的隐马尔可夫模型,该模型对输入和受控输出序列的联合概率分布进行建模,并利用基于核函数的概率密度估计来学习联合概率分布的细节信息,文中详细地讨论了该模型的学习和合成算法,并利用该模型实现了一个虚拟指挥系统,即给定一段音乐,系统可以自动生成相关的乐队指挥动作,该文利用该系统对不同风格和节拍的音乐做了实验,实验结果验证了算法的有效性。  相似文献   

12.
通过改进Hessian矩阵对角参数,调整支持向量机中超平面的位移,将数据量少的样本从两类非均衡样本中进行分离,结合隐马尔可夫随机迭代,实验发现,不能简单固定Hessian矩阵的对角参数,而必须加之以可调整的权系数才能控制错分的样本数.对启动子序列进行识别,平均识别率达到92.8%。  相似文献   

13.
基于HMM和遗传神经网络的语音识别系统   总被引:1,自引:0,他引:1  
本文提出了一种基于隐马尔可夫(HMM)和遗传算法优化的反向传播网络(GA-BP)的混合模型语音识别方法。该方法首先利用HMM对语音信号进行时序建模,并计算出语音对HMM的输出概率的评分,将得到的概率评分作为优化后反向传播网络的输入,得到分类识别信息,最后根据混合模型的识别算法作出识别决策。通过Matlab软件对已有的样本数据进行训练和测试。仿真结果表明,由于设计充分利用了HMM时间建模能力强和GA-BP神经网络分类能力强等特点,该混合模型比单纯的HMM具有更强的抗噪性,克服了神经网络的局部最优问题,大大提高了识别的速度,明显改善了语音识别系统的性能。  相似文献   

14.
为了解决语音信号中帧与帧之间的重叠,提高语音信号的自适应能力,本文提出基于隐马尔可夫(HMM)与遗传算法神经网络改进的语音识别系统.该改进方法主要利用小波神经网络对Mel频率倒谱系数(MFCC)进行训练,然后利用HMM对语音信号进行时序建模,计算出语音对HMM的输出概率的评分,结果作为遗传神经网络的输入,即得语音的分类识别信息.实验结果表明,改进的语音识别系统比单纯的HMM有更好的噪声鲁棒性,提高了语音识别系统的性能.  相似文献   

15.
.基于规则提取量的Web日志关联规则挖掘方法*   总被引:2,自引:0,他引:2  
引入规则提取量的度量标准,提出一种基于免疫多克隆遗传策略的Web日志关联规则挖掘方法。该算法在遗传算法的基础上引入免疫多克隆算子,有效地克服了遗传算法容易陷入局部最优的缺点,具有更强的全局与局部搜索能力。实验结果表明,该算法能高效地解决Web日志关联规则挖掘问题。  相似文献   

16.
树增强朴素贝叶斯模型通过放松条件属性独立来改进贝叶斯模型,结构学习效率较高且简单。然而在一些实际试验测试中,树增强朴素贝叶斯分类模型的分类精确性和失误率的效果却不好。因此在本文中,设计了平均的树增强朴素贝叶斯分类算法来改进分类的效果,并且利用条件对数似然来测试分类估计的效果,最后利用Weka平台公布的大量的UCI数据集进行试验,结果表明平均树增强朴素贝叶斯分类模型明显优于树增强的朴素贝叶斯分类模型。  相似文献   

17.
一种基于改进遗传算法的图像分割方法*   总被引:4,自引:2,他引:4  
为了自动确定图像分割的最佳阈值,提出了一种基于改进遗传算法的图像分割方法,即利用这种改进遗传算法对二维Otsu图像分割函数进行全局优化,该方法能够根据个体适应度大小和群体的分散程度自动调整遗传控制参数,从而能够在保持群体多样性的同时加快收敛速度,最后得到图像分割的最佳阈值,克服了传统遗传算法的收敛性差、易早熟等问题。在理论分析和仿真数据实验中,与二维Otsu图像分割法和基于基本遗传算法的图像分割法相比,使用该方法得出的阈值范围更加稳定,阈值计算时间有极大的提高,更能满足图像处理的实时性要求。  相似文献   

18.
小波图像去噪已经成为图像去噪的主要方法之一。利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边缘信息,但现有的去噪声方法忽略了小波系数之间的相关性。针对这一不足,在小波域隐Markov树模型(HMT)的基础上给出了一种图像去噪新方法。实验结果表明,与普通的小波去噪方法相比,该方法不但可以保留图像的边缘信息,而且能提高去噪后图像的峰值信噪比。  相似文献   

19.
针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。  相似文献   

20.
隐马尔可夫模型(HMM)是非侵入式负荷监测常用的算法.由于电压波动与负荷自身电气特性变化等原因,负荷的测量状态如功率可能持续变化,运行过程中出现新的状态转移,但当前基于HMM的非侵入式负荷监测方法并未考虑如何处理该情况,缺乏状态辨识与功率分解的泛化能力.针对这一问题,本文提出并构建二元参数隐马尔科夫模型(BPHMM),结合DBSCAN聚类算法,基于有功功率和稳态电流对负荷状态进行聚类,降低了因电压波动和噪声数据对负荷状态聚类结果造成干扰的可能性;改进维特比算法使其考虑到HMM模型参数更新以实现对负荷状态预测泛化性能的改进;考虑到功率的随机波动性,基于极大似然估计原理构建功率计算优化模型并实现负荷的功率分解.本文采用公共数据集AMPds2对所述方法进行验证,测试算例验证了所述方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号