首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Mycotoxins are common dietary contaminants in most regions of the world. The frequency of exposure to the various families of mycotoxins is often dependent on geographic location, national wealth and related agricultural and regulatory infrastructure, combined with diversity of diet and degree of food sufficiency. Deoxynivalenol (DON) is a Fusarium mycotoxin that frequently contaminates wheat, corn and barley in temperate regions. A number of acute poisoning incidences have been linked to DON-contaminated foods and chronic exposure to lower levels of DON has been predicted in many regions. DON is a potent animal toxin and exposure in humans may cause gastroenteritis, growth faltering and immune toxicity. An ability to conduct accurate exposure assessment at the individual level is required to fully understand the potential health consequences for humans. To date, such exposure biomarkers have been lacking for many important mycotoxins, including DON. To better assess exposure to DON at the individual level, we have developed a robust urinary assay, incorporating immunoaffinity column (IAC) enrichment and LC-MS detection. Further refinement of this urinary assay, by inclusion of (13)C-DON as an internal standard, was then undertaken and tested within the UK. DON was frequently observed in urine and was significantly associated with cereal intake. A dietary intervention study demonstrated that avoiding wheat in the diet markedly reduced urinary levels of DON. This biomarker requires further validation but our initial data suggest it may provide a useful tool in epidemiological investigations of the potential health consequences of this common environmental toxin.  相似文献   

2.
Deoxynivalenol (DON) is a toxic fungal metabolite that frequently contaminates cereal crops including wheat, maize and barley. Despite knowledge of frequent exposure through diet, our understanding of the potential consequences of human exposure remains limited, in part due to the lack of validated exposure biomarkers. In this study, we interrogated the urinary metabolome using nuclear magnetic resonance (NMR) spectroscopy to compare individuals with known low and high DON exposure through consumption of their normal diet. Urine samples from 22 adults from the UK (seven males, 15 females; age range = 21–59 years) had previously determined urinary DON levels using an established liquid chromatography-mass spectrometry (LC-MS) assay. Urine samples were subsequently analysed using an NMR-based metabolomics approach coupled with multivariate statistical analysis. Metabolic profiling suggested that hippurate levels could be used to distinguish between groups with low (3.6 ng DON mg?1 creatinine: 95% CI = 2.6, 5.0 ng mg?1) and high (11.1 ng mg?1: 95% CI = 8.1, 15.5 ng mg?1) DON exposure, with the concentration of hippurate being significantly (1.5 times) higher for people with high DON exposure than for those with low DON exposure (p = 0.047). This, to our knowledge, is the first report of a metabolomics-derived biomarker of DON exposure in humans.  相似文献   

3.
Trichothecenes are a group of mycotoxins mainly produced by fungi of the Fusarium genus. Deoxynivalenol (DON) is one of the most abundant and important trichothecenes in food and feed, and is a significant contaminants due to its frequent occurrence in toxicologically relevant concentrations worldwide. Since toxin production depends strongly on environmental conditions, such as temperature and humidity, Fusarium toxin contamination can not be avoided completely. Therefore, exposure to this toxin is a permanent health risk for both humans and farm animals. As cereal crops are commonly contaminated with DON and animal diets consist mainly of cereals, it can be assumed that animals are frequently exposed to DON-contaminated feeds. Many strategies can be undertaken to reduce the toxic effect of DON. In addition to the general necessity for minimizing all risk factors that might influence the contamination of cereals with DON, such as the so-called field toxins before harvest, several post-harvest strategies can be applied to counteract possible deleterious effects of this mycotoxin in farm animals. Another approach for decontamination in feedstuffs is the use of adsorbent materials. Adsorbent materials may bind mycotoxins in the gastrointestinal tract and reduce absorption and systemic toxicity. It has been shown that some adsorbents are suitable to alleviate the toxic effects of specific mycotoxins, but its efficacy against trichothecenes is practically zero. Therefore, alternative strategies to reduce animal and human health risk are needed. The use of microbial additives is a method which uses microorganisms having the capability to detoxify mycotoxins by metabolism or degradation prior to their resorption in the gastrointestinal tract. DON has been reported to be completely transformed to de-epoxy-DON by ruminal and intestinal microflora. Eubacterium BBSH 797 was capable of DON degradation and counteracted the toxic effects of DON in animals. This review focuses on the efficacy of microbial feed additives in ameliorating the toxic effects of DON. According to the results of experiments to date, it appears that microorganisms are the main living organisms suitable for this mycotoxin biodegradation. However, the use of this approach depends on its effectiveness from both a practical and economic perspective.  相似文献   

4.
Organic farming does not allow the use of conventional mineral fertilizers and crop protection products. As a result, in our experiments we chose to grow different species of cereals and to see how cereal species affect mycotoxin accumulation. This study describes the occurrence of deoxynivalenol (DON), zearalenone (ZEA) and T-2/HT-2 toxin in a survey of spelt and common wheat and their bran as well as flour. The analysis was conducted using an enzyme-linked immunosorbent assay (ELISA) method. The concentrations of DON, ZEA and T-2/HT-2 in Triticum spelta and T. aestivum were influenced by species, cereal type and year interaction. The highest concentrations of these mycotoxins were found in spelt grain with glumes, in spelt glumes and in spring wheat. These results show significantly higher concentrations of Fusarium toxins in glumes than in dehulled grain, which indicates the possible protective effect of spelt wheat glumes. The lowest DON, ZEA and T-2/HT-2 concentrations were determined in spelt grain without glumes. The research shows that it is potentially risky to produce bran from grain in which mycotoxin concentrations are below limits by European Union Regulation No. 1881/2006, since the concentration of mycotoxins in bran can be several times higher than that in grain. As a result, although bran is a dietary product characterised by good digestive properties, it can become a harmful product that can cause unpredictable health damage.  相似文献   

5.
Each year (2001–2005), 300 samples of wheat from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl-DON, 15-acetyl-DON, fusarenone X, T2 toxin, HT2 toxin, diacetoxyscirpenol, neosolaniol and T-2 triol and zearalenone by high-performance liquid chromatography (HPLC). Of the eleven mycotoxins analysed from 1624 harvest samples of wheat, only eight were detected, and of these only five–deoxynivalenol, 15-acetyl-DON, nivalenol, HT-2 and zearalenone–were detected above 100 µg kg?1. DON was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 µg kg?1) in 86% of samples, and was usually present at the highest concentration. The percentage of samples that would have exceeded the recently introduced legal limits varied between 0.4% and 11.3% over the five-year period. There was a good correlation between DON and zearalenone concentrations, although the relative concentration of DON and zearalenone fluctuated between years. Year and region had a significant effect on all mycotoxins analysed. There was no significant difference in the DON concentration of organic and conventional samples. There was also no significant difference in the concentration of zearalenone between organic and conventional samples, however organic samples did have a significantly lower concentration of HT2 and T2. Overall, the risk of UK wheat exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is low, but the percentage of samples above these limits will fluctuate between years.  相似文献   

6.
ABSTRACT

Deoxynivalenol (DON) is a Fusarium toxin, to which humans are frequently exposed via diet. Although the elderly are speculated to be sensitive to the toxic effects of DON as a result of age-related conditions, disease and altered DON metabolism, there is lack of available data on DON biomarkers in this age group. This study characterised urinary DON concentrations and its metabolites in elderly aged ≥65years (n = 20) residing in Hull, UK. Morning urinary specimens were collected over two consecutive days together with food records to assess dietary intake over a 24h-period prior to each urinary collection. Free DON (un-metabolised), total DON (sum of free DON and DON-glucuronides or DON-GlcA) and de-epoxy deoxynivalenol (DOM-1) were analysed using a validated LC-MS/MS methodology. Total DON above the limit of quantification 0.25 ng/mL was detected in the urine from 90% of elderly men and women on both days. Mean total DON concentrations on day 1 were not different from those on day 2 (elderly men, day 1: 22.2 ± 26.3 ng/mg creatinine (creat), day 2: 28.0 ± 34.4 ng/mg creat, p = 0.95; elderly women, day 1: 22.4 ± 14.6 ng/mg creat, day 2: 29.1 ± 22.8 ng/mg creat, p = 0.58). Free DON and DON-GlcA were detected in 60–70% and 90% of total urine samples, respectively. DOM-1 was absent from all samples; the LoQ for DOM-1 was 0.50 ng/mL. Estimated dietary intake of DON suggested that 10% of the elderly exceeded the maximum provisional tolerable daily intake for DON. In this single-site, UK-based cohort, elderly were frequently exposed to DON, although mean total DON concentrations were reported at moderate levels. Future larger studies are required to investigate DON exposure in elderly from different regions of the UK, but also from different counties worldwide.  相似文献   

7.
A survey was carried out to obtain data on the occurrence of Fusarium mycotoxin in wheat and flour samples collected from local markets in Egypt and to study the influence of gamma-irradiation on controlling the occurrence of these mycotoxins in wheat, flour and bread. Deoxynivalenol (DON) was detected in five samples of wheat at levels ranging from 103 to 287 μg/kg and one sample each of flour and bread at concentrations 188 and 170 μg/kg. Zearalenone (ZEN) was detected in ten samples of wheat at levels from 28 to 42 μg/kg and four samples each of flour and bread at concentrations of 95 and 34 μg/kg, respectively. T-2 toxin was detected only in one sample each of wheat, flour and bread at concentrations of 2.9, 2.2 and 2.3 μg/kg, respectively. Gamma-irradiation at dose level of 6 kGy completely eliminated fungal flora in flour and wheat. DON, ZEN and T-2 toxin concentrations are reduced to 85, 20 and 2.0 μg/kg for wheat and to 125, 45, and 1.0 μg/kg for flour after 4 kGy exposure and a sharp drop in Fusarium toxin levels occurred at 6 kGy and was eliminated at 8 kGy. Bread prepared from 6 kGy was contaminated with Fusarium toxin at levels below 5 μg/kg. It was noticed that gamma-irradiation reduce greatly the natural occurrence of Fusarium mycotoxins in bread.  相似文献   

8.
Although forecasting Fusarium infections have useful implications, it may be argued that forecasting Fusarium toxins is more useful to help reduce their entry into the food chain. Several disease incidence models have been commercialized for wheat, but only one toxin prediction model from Ontario, Canada, "DONcast", has been validated extensively and commercialized to date for wheat, and another has been proposed for maize. In the development of these predictive tools, the variation in toxin levels associated with year and agronomic effects was estimated from simple linear models using wheat and maize samples taken from farm fields. In wheat, environment effects accounted for 48% of the variation in deoxynivalenol (DON) across all fields, followed by variety (27%), and previous crop (14 to 28%). In maize, hybrid accounted for 25% of the variation of either DON or fumonisin, followed by environment (12%), and when combined 42% of the variability was accounted for. The robust site-specific, DON forecast model accounted for up to 80% of the variation in DON, and has been used commercially for 5 years in Canada. Forecasting DON and fumonisins in maize is more difficult, because of its greater exposure to infection, the role of wounding in infection, the more important role of hybrid susceptibility, and the vast array of uncharacterized hybrids available in the marketplace. Nevertheless, using data collected from controlled experiments conducted in Argentina and the Philippines, a model was developed to predict fumonisin concentration using insect damage and weather variables, accounting for 82% of the variability of fumonisins. Using mycotoxins as a measure of disease outcome, as opposed to disease symptoms, offers a more robust prediction of mycotoxin risk, and it accounts for mycotoxin accumulation that occurs frequently in the absence of any change in Fusarium symptoms.  相似文献   

9.
Human exposures to mycotoxins through dietary intake are a major health hazard and may result in various pathophysiological effects. Although Thailand is a country at increased risk due to its climatic conditions, no comprehensive dataset is available to perform proper exposure assessment of its population with regard to mycotoxins. Therefore, this pilot study was conducted to investigate and evaluate the exposure levels of major mycotoxins (aflatoxin B1, ochratoxin A, fumonisins, zearalenone and trichothecenes). Sixty first-morning urine samples were collected from healthy volunteers who live in the Bangkok metropolitan area and surrounding provinces (Pathumthani, Nonthaburi, Samutprakarn and Samutsakorn). Urine samples were analysed by a LC-MS/MS-based multi-biomarker method following a so-called ‘dilute and shoot’ approach. Results generally indicated low mycotoxin exposures in most individuals through the determination of the four biomarkers that were detected in urine samples, i.e. aflatoxin M1, ochratoxin A (OTA), as well as the deoxynivalenol (DON) metabolites DON-3-glucuronide and DON-15-glucuronide in 10 of 60 individuals. The maximum concentrations were used to estimate the daily intake confirming that none of the individuals exceeded the tolerable daily intake (TDI) of DON (maximum 26% of TDI) or OTA (maximum 22% of TDI). However, the maximum exposure of aflatoxin B1, estimated to be 0.91 µg (kg bw)–1 day–1, should raise some concerns and suggests further studies utilising a more sensitive method. Low exposure to Fusarium toxins was also confirmed by the absence of zearalenone, α-zearalanol, β-zearalanol and zearalenone-14-glucuronide as well as T-2 toxin, HT-2 toxin, nivalenol and free DON. This is the first multi-mycotoxin biomarker study performed in Southeast Asia.  相似文献   

10.
The Fusarium mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T-2 frequently contaminate grain crops in Middle and Eastern Europe. In this survey, 116 cereal samples (maize, wheat, barley and oat) were examined for DON, ZEN and T-2 mycotoxins. Samples were collected from different areas in two Hungarian regions (North and South Transdanubia). The method of analysis was indirect competitive ELISA. Maize was the most contaminated grain regarding DON (86%), ZEN (41%) and T-2 (55%) toxins. The average results of the deoxynivalenol and zearalenone tests of maize proved to be significantly higher than those of barley or oat. DON was the most represented Fusarium mycotoxin followed by T-2 and ZEN. The examination of these mycotoxins would be necessary at a larger scale as to re-evaluate permissible levels, so increase of the monitoring programme would be advisable for the future.  相似文献   

11.
The quality of harvested wheat grain can deteriorate markedly during the post-harvest management stages. Biotic factors, such as grain type and ripeness, coupled with the prevailing abiotic factors, such as water content and temperature, and also preservative concentration will influence the safe storage life and the level of contamination with mycotoxins. These mycotoxins include deoxynivalenol (DON) produced pre-harvest and zearalenone (ZEA) produced post-harvest by Fusarium graminearum and Fusarium poae, respectively, ochratoxin (OTA) produced by Penicillium verrucosum post-harvest in cool damp northern European climates, and perhaps T-2 and HT-2 toxins produced by Fusarium langsethiae. This review presents recent data on the relationship between dry matter losses caused by F. graminearum under different environmental regimes (water activities, temperatures) and the level of contamination with DON. This is important as poor post-harvest drying and storage management may exacerbate DON contamination already present pre-harvest. It is thus critical to relate the environmental factors in stored wheat grain during storage, especially of intergranular relative humidity (RH) and temperature, to safe storage periods without spoilage or risk from increased DON contamination. The growth/no growth and DON/no DON (F. graminearum) and OTA/no toxin production (P. verrucosum) have been used to build a model with a simple interface to link temperature and RH values to the potential risk level which may allow growth or toxin production. This paper also considers the use of modified atmospheres, preservatives and biocontrol to minimise DON and OTA in moist wheat grain. These approaches together with clear monitoring criteria and hygiene could contribute to better post-harvest management of stored temperate cereals and ensure that mycotoxin contamination is minimised during this key phase in the food/feed chain.  相似文献   

12.
The aim of this study was to develop a multicomponent analytical method for the determination of deoxynivalenol (DON), ochratoxin A (OTA) and zearalenone (ZEN), nivalenol (NIV), 3-acetyl-DON (3-acDON), 15-acetyl-DON (15-acDON), zearalenol (ZOL) and citrinin (CIT) in wheat. It also aimed to survey the presence and amounts of DON, OTA and ZEN in Belgian conventionally and organically produced wheat grain and in wholemeal wheat flours. After solvent extraction, an anion-exchange column (SAX) was used to fix the acidic mycotoxins (OTA, CIT), whilst the neutral mycotoxins flowing through the SAX column were further purified by filtration on a MycoSep cartridge. OTA and CIT were then analysed by high-performance liquid chromatography (HPLC) using an isocratic flow and fluorescence detection, while the neutral mycotoxins were separated by a linear gradient and detected by double-mode (ultraviolet light fluorescence) detection. The average DON, ZEN and OTA recovery rates from spiked blank wheat flour were 92, 83 and 73% (RSDR = 12, 10 and 9%), respectively. Moreover, this method offered the respective detection limits of 50, 1.5 and 0.05 microg kg-1 and good agreement with reference methods and inter-laboratory comparison exercises. Organic and conventional wheat samples harvested in 2002 and 2003 in Belgium were analysed for DON, OTA and ZEN, while wholemeal wheat flour samples were taken from Belgian retail shops and analysed for OTA and DON. Conventional wheat tended to be more frequently contaminated with DON and ZEN than organic samples, the difference being more significant for ZEN in samples harvested in 2002. The mean OTA, DON and ZEA concentrations were 0.067, 675 and 75 microg kg-1 in conventional samples against 0.063, 285 and 19 microg kg-1 in organically produced wheat in 2002, respectively. Wheat samples collected in 2003 were less affected by DON and ZEN than the 2002 harvest. Organic wholemeal wheat flours were more frequently contaminated by OTA than conventional samples (p < 0.10). The opposite pattern was shown for DON, organic samples being more frequently contaminated than conventional flours (p < 0.10).  相似文献   

13.
A total of 36 gilts (103 +/- 6 kg) were divided into four groups and fed diets with increasing proportions of a Fusarium toxin contaminated wheat over a period of 35 days. The concentrations of the indicator toxins deoxynivalenol (DON) and zearalenone (ZON) which were analyzed by HPLC methods were 210 and 4, 3070 and 88, 6100 and 235 and 9570 and 358 mug.kg(-1) diet fed to groups 1-4 respectively. Feed was partially refused during the first 21 days of the experiment by groups 2, 3 and 4 where two, three and six out of nine gilts were affected. No signs of hyperestrogenism or uterotrophic effects were observed due to dietary treatments. Blood serum, urine, bile and liver were analyzed for residues of DON, ZON and their metabolites. DON and its de-epoxidized metabolite (de-epoxy-DON) were detected in all analyzed specimens and increased in a significantly linearly related fashion. Alpha-zearalenol (alpha-ZOL) and beta-ZOL could be detected besides the parent toxin ZON, but only in bile and urine. In conclusion, the impact of dietary treatments on the performance parameters was most pronounced in the highest exposed group. The maximum ratio between DON concentration in liver and diet was 0.0013, and suggests that a possible contamination of pig liver with DON is negligible and does not contribute significantly to human DON exposure.  相似文献   

14.
15.
A survey was conducted to determine the occurrence of mycotoxins in feedstuffs of dairy cows in the Netherlands and to estimate total dietary intakes of these compounds. Twenty-four dairy farms were visited twice and samples taken of all diet ingredients. Feed intake data were collected by means of questionnaires. A total of 169 feed samples were collected and analyzed for 20 mycotoxins using a liquid chromatography tandem mass spectrometry multimethod. Silage and compound feed were the main diet ingredients, representing on average 67 and 23% of dry matter intake, respectively. Deoxynivalenol (DON), zearalenone, roquefortine C, and mycophenolic acid were the mycotoxins with the highest incidence. The incidence of DON in silage, compound feed, and feed commodity samples was 38 to 54%. The incidence of zearalenone in silage, compound feed, and feed commodity samples was 17 to 38%. The DON and zearalenone had a low incidence in forage samples and were not detected in ensiled by-product samples. Roquefortine C and mycophenolic acid were only detected in silage and ensiled by-product samples (incidence 7 to 19%). Fumonisins B1 and B2 were detected in 2 compound feed samples and one feed commodity sample. Aflatoxins B1, B2, G1, and G2, ochratoxin A, T-2 and HT-2 toxin, 3-acetyl-DON, 15-acetyl-DON, diacetoxyscirpenol, sterigmatocystin, fusarenon-X, ergotamine, and penicillinic acid were not detected in any of the samples. Average concentrations of DON, zearalenone, roquefortine C, and mycophenolic acid in complete diets were 273, 28, 114, and 54 μg/kg, respectively. Maximum concentrations were 969, 203, 2,211, and 1,840 μg/kg, respectively. Calculated average daily intakes of these mycotoxins were 5.0, 0.5, 2.0, and 0.9 mg/animal, respectively, and maximum daily intakes 19.3, 3.5, 38.9, and 32.3 mg/animal, respectively. Corn silage was the major source of all 4 of these mycotoxins in the diet. Extremely high concentrations of roquefortine C and mycophenolic acid (up to 45 and 25 mg/kg, respectively) were detected in visibly molded areas in surface layers of corn silage. These areas appeared to be the main source of roquefortine C and mycophenolic acid in the diet. Because carry-over of DON, zearale-none, roquefortine C, and mycophenolic acid into milk is negligible, their occurrence in feedstuffs is not considered of significant concern with respect to the safety of dairy products for consumers. Potential implications for animal health are discussed.  相似文献   

16.
In the present study, the occurrence and contamination levels of eight mycotoxins were investigated in wheat flour samples (n = 359) from Shandong Province of China. Samples were determined using a multi-mycotoxin method based on isotope dilution ultrahigh performance liquid chromatography–tandem mass spectrometry. The results indicated that the most frequently found mycotoxins were deoxynivalenol (DON) (97.2%), nivalenol (40.4%) and deoxynivalenol-3-glucoside (33.4%), and mean contamination levels in positive samples were 86.7, 3.55 and 3.34 µg kg?1, respectively. The obtained data were further used to estimate the daily intake of the local population, and indicated that wheat flour consumption contributes little to DON exposure. However, with the aim to keep the contamination levels under control and to establish a more precise evaluation of the mycotoxin burden in Shandong Province, more sample data from different harvest years and seasons are needed in the future.  相似文献   

17.
Fungi are distributed worldwide and can be found in various foods and feedstuffs from almost every part of the world. Mycotoxins are secondary metabolites produced by some fungal species and may impose food safety risks to human health. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), trichothecenes, deoxynivalenol (DON and T‐2 toxin), zearalenone (ZEN), and fumonisins (FMN) have received much attention due to high frequency and severe health effects in humans and animals. Malaysia has heavy rainfall throughout the year, high temperatures (28 to 31 °C), and high relative humidity (70% to 80% during wet seasons). Stored crops under such conditions can easily be contaminated by mycotoxin‐producing fungi. The most important mycotoxins in Malaysian foods are AFs, OTA, DON, ZEN, and FMN that can be found in peanuts, cereal grains, cocoa beans, and spices. AFs have been reported to occur in several cereal grains, feeds, nuts, and nut products consumed in Malaysia. Spices, oilseeds, milk, eggs, and herbal medicines have been reported to be contaminated with AFs (lower than the Malaysian acceptable level of 35 ng/g for total AFs). OTA, a possible human carcinogen, was reported in cereal grains, nuts, and spices in Malaysian market. ZEN was detected in Malaysian rice, oat, barley, maize meal, and wheat at different levels. DON contamination, although at low levels, was reported in rice, maize, barley, oat, wheat, and wheat‐based products in Malaysia. FMN was reported in feed and some cereal grains consumed in Malaysia. Since some food commodities are more susceptible than others to fungal growth and mycotoxin contamination, more stringent prevention and control methods are required.  相似文献   

18.
19.
玉米赤霉烯酮(zearalenone,ZEN)和脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)是粮食中常见的真菌毒素,长期的饮食暴露会对生物体造成严重危害。目前针对ZEN和DON同步免疫检测分别依赖各自对应的单克隆抗体,而传统单克隆抗体制备周期长、成本高。作者利用重组抗体表达技术在短时间内获得了可同时识别ZEN和DON的双特异性抗体(Bis-scFv),并构建了基于Bis-scFv的间接竞争酶联免疫检测方法(indirect competitive enzyme-linked immunosorbent assay,IC-ELISA),获得ZEN和DON标准曲线的半数抑制质量浓度(IC50)分别为20.64 ng/mL和132.29 ng/mL;Bis-scFv具有良好的特异性,与其他真菌毒素均无显著的交叉反应。同时,将IC-ELISA方法对玉米中的ZEN和DON进行加标回收实验,其回收率为86.02%~108.14%。本研究证明了所开发的Bis-scFv未来可应用于粮食样本中ZEN与DON的同步快速检测方法的开发。  相似文献   

20.
The occurrence of deoxynivalenol (DON) was evaluated in 113 wheat samples from the northern and central/southwestern regions of Paraná State, Brazil during the 2008 and 2009 growing seasons, and this rate of occurrence was used to estimate the DON dietary exposure. The DON determination was carried out by an indirect competitive enzyme-linked immunosorbent assay. DON was detected in 66.4% samples at levels ranging from 206.3 to 4732.3 μg/kg (mean 1894.9 μg/kg). The estimated daily intake (EDI) of DON through bread and pasta was evaluated in the inhabitants of Londrina City in northern Paraná State, Brazil. The average intake of these inhabitants was 0.79 μg/kg body weight (b.w.) for bread and 0.35 μg/kg b.w. for pasta. The total EDI was 1.13 μg/kg, which is above the Provisional Tolerable Daily Maximum Intake (PTDMI) of 1 μg/kg b.w. To our knowledge, this is the first report on natural DON occurrence in wheat and DON dietary exposure estimation from Paraná, Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号