首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The multiaxial creep ductility of austenitic stainless steels   总被引:1,自引:0,他引:1  
Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In practice, calculations of creep damage are further complicated by the presence of multiaxial states of stress. In the case of the time fraction approach, there are a number of models that can be used to predict the effect of state of stress on creep rupture strength. In particular, Huddleston developed a model from data on stainless steels. The R5 procedure uses a ductility exhaustion approach to calculate creep damage and includes a model for use under triaxial states of stress. The aim of this paper is to describe the development of this model, which is based on considerations of cavity nucleation and growth and was developed from multiaxial creep data on Type 304 and 316 steels.  相似文献   

2.
Abstract

Short and long term trends in creep crack growth (CCG) rate data over test times of 500–30?000 h are available for Austenitic Type 316H stainless steel at 550°C using compact tension, C(T), specimens. The relationship between CCG rate and its dependence on creep ductility, strain rate and plastic strain levels has been examined. Uniaxial creep data from a number of batches of 316H stainless steel, over the temperature range 550–750°C, have been collected and analysed. Power-law correlations have been determined between the creep ductility, creep rupture times and average creep strain rate data with stress σ normalised by flow stress σ0·2 over the range 0·2<σ/σ0·2<3 for uniaxial creep tests times between 100 and 100?000 h. Creep ductility exhibits upper shelf and lower shelf values which are joined by a stress dependent transition region. The creep strain rate and creep rupture exponents have been correlated with stress using a two-stage power-law fit over the stress range 0·2<σ/σ0·2<3 for temperatures between 550 and 750°C, where it is known that power-law creep dominates. For temperature and stress ranges where no data are currently available, the data trend lines have been extrapolated to provide predictions over the full stress range. A stress dependent creep ductility and strain rate model has been implemented in a ductility exhaustion constraint based damage model using finite element (FE) analysis to predict CCG rates in 316H stainless steel at 550°C. The predicted CCG results are compared to analytical constant creep ductility CCG models (termed NSW models), assuming both plane stress and plane strain conditions, and validated against long and short term CCG test data at 550°C. Good agreement has been found between the FE predicted CCG trends and the available experimental data over a wide stress range although it has been shown that upper-bound NSW plane strain predictions for long term tests are overly conservative.  相似文献   

3.
The importance of multiaxial stress in creep deformation and rupture   总被引:2,自引:0,他引:2  
This paper investigates the importance of multiaxial stress states by considering several distinct testing techniques used in assessing both creep deformation and creep damage accumulation. The requirements of testing programmes to determine the necessary data are discussed in respect of sensitivity and interdependence of the principal and hydrostatic stress ratios.  相似文献   

4.
Experimental investigations on the creep rupture behaviour of type 304, 304£ and 316 stainless steels, a nickel-base superalloy SuperNi 600 and a turbine disc alloy (equivalent to MAR M 200) have been carried out. Stainless steels 304£ and 316 have been tested with and without weldment, and materials 304 SS and SuperNi 600 have been tested with and without corrosive coatings. MAR M 200 was tested in air. A parametric method is suggested for obtaining the master curves for these alloys under test conditions. The applicability of the parameter to 25-20 stainless steel and a modified nuclear grade 316 type stainless steel has been verified.  相似文献   

5.
    
In this paper, the remaining creep life of SA-304L stainless steel at elevated temperatures is studied. The small punch creep tests (SPCT) were performed on SA-304L virgin and aged materials at constant loads. Times to fracture and the minimum deflection rate in SPCTs were recorded, and the time-temperature parametric analysis was performed, based on experimental results. The constants of the Larson–Miller parameter and the Monkman–Grant relationship were obtained for different consumed creep life ratios, and eventually the equations were established to explain the variation of constants of the Larson–Miller parameter and the Monkman-Grant relationship with respect to the consumed creep life ratio.  相似文献   

6.
A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 °C (1200 °F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially structural collapse, under elevated temperature service, even at temperatures more than 300 °C (540 °F) below the normal solution annealing temperature. The creep strength of the recrystallized 304/304L steel was more than 1000 times less than that achievable with solution annealed 304H. These observations are consistent with limitations (2000 Addendum to ASME Boiler and Pressure Vessel Code) on the use of cold worked austenitic stainless steels for elevated temperature service.  相似文献   

7.
对用于蠕变持久寿命预测的Manson-Haferd方法和Larson-Miller方法的对比分析表明:在Larson-Miller参数模型中,依据实验数据得到的常数C的波动,对预测结果影响较大;而在Manson-Haferd参数模型中,常数(Ta,lgta)不是两个独立的变量,它们之间存在良好的线性关系;在较大范围内Manson-Haferd常数(Ta,lgta)的改变对持久寿命预测结果影响较小.选取统一的Manson-Haferd常数(450,15)关联几种耐热钢的持久性能数据,均得到了精度较高的预测结果.这为材料高温持久性能的比较及精确预测提供了便利的方法.  相似文献   

8.
    
A series of symmetric torsional fatigue with axial constant stress tests, a kind of multiaxial fatigue test, was conducted on oligo‐crystalline 316L stainless steel thin wire, which was less than 3.5 grains across diameter of 200 μm. The material presents significant cyclic hardening under symmetric torsion cycling, and hardening is more obvious with the increasing shear strain amplitude. However, symmetric torsional cycle with constant axial stresses tests characterize rapid initial hardening and then gradually softening until fatigue failure. The axial stress has a great effect on torsional fatigue life. Fractography observation shows a mixed failure mode combined torsional fatigue with tensile strain because of axial tensile stress. A newly proposed model with axial stress damage parameter is used to predict the torsional fatigue life with constant axial stress of small scale thin wire.  相似文献   

9.
10.
Super304H奥氏体耐热钢微观组织研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为了深入认识新型奥氏体耐热钢Super304H(0.1C-18Cr-9Ni-3Cu-Nb,N)的微观组织,利用光学显微镜、扫描电子显微镜、电子探针和X射线衍射等手段,研究了Super304H钢合金元素的分布和析出相的组成及分布形态.试验结果表明,Super304H钢在供货状态下的显微组织由γ-基体和析出相组成.与传统的18-8不锈钢相比,这种奥氏体钢晶粒均匀细小,晶粒尺寸约46μm.析出相主要由Nb(C,N)和富铜相组成,Nb(C,N)有呈方向性分布的条块状和呈弥散分布的细小颗粒状两种形态,条块状的Nb(C,N)是软化过程中残留下来的,而弥散分布的是固溶处理及冷却过程中析出形成的.其中弥散分布的Nb(C,N)与富铜相对细化晶粒和改善钢的高温强度起重要作用,而多种复合强化机制使得Super304H钢具有优异的高温性能.  相似文献   

11.
    
This paper discusses low‐cycle fatigue characteristics of 316L stainless steel under proportional and nonproportional loadings. Tension–torsion multiaxial low‐cycle fatigue tests were performed using five strain paths. Additional hardening was observed under nonproportional loadings and was more significant in tests with larger nonproportionality. Mises equivalent strain, Smith–Watson–Topper, Fatemi–Socie, Kandil–Brown–Miller and nonproportional strain parameters were applied to the experimental data to evaluate the multiaxial low‐cycle fatigue damage. The applicability of the damage laws to practical design was discussed.  相似文献   

12.
模拟冷却水中304不锈钢的耐蚀性影响因素研究   总被引:16,自引:1,他引:15  
用电化学方法研究了Cl^-、S^2-、NO3^-、温度以及某电厂水质稳定剂对304不锈钢耐蚀性的影响。极化曲线表明:在[Cl-]/[SO4^2-]约为0.56时,点蚀电位开始下降,并随着Cl-浓度的增大逐渐降低;S2-的加入使钝化电流显著增大;NO3-浓度增加使点蚀电位逐渐升高;溶液温度的提高使点蚀电位降低,钝化电流也有所增大,钝化膜的耐蚀性降低;实验表明采用的某厂水质稳定剂可引起304不锈钢点蚀电位的下降。Mott-Schottky图显示S2-浓度的增加使体现p-型半导体(氧化铬)性质的直线段发生较大变化,说明硫离子影响了铬氧化物的性质。  相似文献   

13.
SS304不锈钢循环变形行为温度效应的实验研究   总被引:5,自引:0,他引:5  
对SS304不锈钢进行了系统的室温、高温单轴和非比例多轴应变控制循环和应力控制循环行为的实验研究。重点讨论了温度变化对材料应变循环特性和棘轮行为的影响;同时也讨论了在同一温度、不同加载形式条件下材料的应变循环特性和循环棘轮行为特征。结果表明,SS304不锈钢的循环变形行为具有明显的温度效应,并且在400~600℃范围内,材料会体现出显著的动态应变时效特性。  相似文献   

14.
采用残余应力检测、常规力学性能试验以及金相分析等方法对304不锈钢低温分离器的封头开裂原因进行分析。结果表明,开裂是由应力腐蚀引起的;其原因是工作介质中有含量较高的硫,而封头一筒体对接环焊缝区域存在的残余应力促使开裂的发生。  相似文献   

15.
Abstract

New relationships are shown to allow straightforward rationalization and extended extrapolation of multi-batch creep data sets for Grade 91 steel (9Cr –1MoVNb). Specifically, after normalizing the applied stress through the appropriate UTS value, creep property measurements at different temperatures are superimposed onto sigmoidal ‘master curves’ using the activation energy for lattice diffusion in the alloy steel matrix (300 kJ mol–1). In contrast to currently-adopted analysis procedures, applying the new methodology to results from tests lasting less than 30,000 h allows the minimum creep rates, the times to various creep strains and the creep lives to be predicted accurately for stress-temperature conditions causing failure in times approaching or even exceeding 100,000 h.  相似文献   

16.
The transformation relationship of the coordinate variables between principal stress space and deviatoric stress plane has been deduced and the isochronous creep rupture loci of disparate criteria have been described on deviatoric stress plane so as to analyze the creep behaviour under multiaxial stress state. The creep experiments of P92 steel smooth and notched specimens subjected to various stresses at 650 °C have been conducted. A modified constitutive model for the creep of P92 steel has been proposed and used to simulate the creep of P92 steel notched specimens with FEA software. The FEA results were consistent with the experimental data and the fracture morphology observation. It was found that the Hayhurst criterion had the best correlation with the experimental results of P92 steel under multiaxial stress state than other criteria through the comparison of the isochronous creep rupture loci on deviatoric plane.  相似文献   

17.
The paper presents the results of an experimental and numerical study on the fatigue behaviour of cruciform load carrying joints made from the duplex stainless steel and failing from the weld root through the weld metal. Fatigue crack growth (FCG) data, obtained in specimens of the weld metal, are presented, as well as threshold data, both obtained for R= 0 and 0.5. The influence of stress ratio is discussed, and the FCGR results are compared with data for low carbon structural steels. S–N data were obtained in the joints, both for R= 0.05 and 0.5, and the fatigue cracking mechanisms were analysed in detail with the SEM. It was found that the cracks propagated very early in the lifetime of the joints, under mixed mode conditions (I + II), but the mode I component was found to be predominant over mode II. The geometries of the cracks were defined in detail from measurements taken in the fracture surfaces. A 2D FE analysis was carried out for the mixed mode inclined cracks obtained at the weld root, and the J‐integral formulations were obtained as a function of crack length and crack propagation angle. The values of the crack propagation angle, θi, were obtained for the Jmax conditions, and it was found that, in the fatigue tests, the cracks propagated in directions very close to the predicted directions of maximum J. KI and KII formulations were obtained, and the KI data were compared with the formulations given in the PD6493 (BS7910) document, and some differences were found. A more general formulation for K under mixed mode conditions was derived. The derived K solutions were applied to predict the fatigue lives of the joints under crack propagation, and an extremely good agreement was found with the experimental results obtained in the fatigue tests.  相似文献   

18.
Abstract: In this article, the material and physical parameters for the creep constitutive equations of cold‐drawn 304L stainless steel have been determined using experimental data. Austenitic stainless steel 304L is used mostly in power generation and petrochemical industries because of its high‐temperature creep resistance even at above yield stresses. Test samples have been obtained from cold‐drawn bars, and the material conforms to ASTM A276‐05a specifications. The creep behaviour and properties have been examined for this material by conducting uni‐axial creep tests. Constant temperature and constant load uni‐axial creep tests have been carried out at three temperatures of 680,700 and 720 °C, subjected to constant loads which produce below and above yield initial stresses of 200, 250, 320, 340 and 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimisation techniques. In addition, the temperature and stress dependency of the creep properties for this alloy have been investigated using Larson–Miller and Monkman–Grant parameters.  相似文献   

19.
Abstract

This study extends the plastic strain energy approach to predict the fatigue life of AISI 304 stainless steel. A modified energy parameter based on the stable plastic strain energy density under tension conditions is proposed to account for the mean strain and stress effects in a low cycle fatigue regime. The fatigue life curve based on the proposed energy parameter can be obtained directly by modifying the parameters in the fatigue life curve based on the stable plastic strain energy pertaining to fully reversed cyclic loading. Hence, the proposed damage parameter provides a convenient means of evaluating fatigue life on the mean strain or stress effect. The modified energy parameter can also be used to explain the combined effect of alternating and mean strain/stress on the fatigue life. In this study, the mean strain effects on the fatigue life of AISI 304 stainless steel are examined by performing fatigue tests at different mean strain levels. The experimental results indicate that the combination of an alternating strain and a mean strain strongly influences the fatigue life. Meanwhile, it is found that the change in fatigue life is sensitive to changes in the proposed damage parameter under the condition of a constant strain amplitude at various mean strain levels. A good agreement is observed between the experimental fatigue life and the fatigue life predicted by the proposed damage parameter. The damage parameter proposed by Smith et al. (1970) is also employed to quantify the mean strain effect. The results indicate that this parameter also provides a reasonable estimate of the fatigue life of AISI 304 stainless steel. However, a simple statistical analysis confirms that the proposed damage parameter provides a better prediction of the fatigue life of AISI 304 stainless steel than the SWT parameter.  相似文献   

20.
通过宏观检验、扫描电镜观察以及X射线能谱分析等手段,对某304奥氏体不锈钢DN50波纹软管开裂原因进行了分析。结果表明:软管开裂是由于腐蚀疲劳所致,软管的管壁内、外表面在腐蚀介质和外界应力的综合作用下产生沿晶微裂纹和蜂窝状腐蚀形貌,并受到交变应力作用,因而发生双向多源疲劳开裂失效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号