首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eisai hyperbilirubinemic rat (EHBR) is a mutant strain with a hereditary defect in canalicular multispecific organic anion transporter (cMOAT). We examined the uptake and mutual inhibition of S-(2,4-dinitrophenyl)-glutathione (DNP-SG), which is a typical substrate for cMOAT, and 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) glucuronide (E-glu) with canalicular membrane vesicles (CMV) prepared from Sprague-Dawley (SD) and EHBR rats to investigate the multiplicity of the organic anion transporter. The ATP-dependent uptake by CMV from SD rats had an apparent Km of 17.6 microM for DNP-SG and 5.7 microM for E-glu, whereas the corresponding uptake by CMV from EHBR had an apparent Km of 44.6 microM for E-glu. The effects of E-glu, 4-methylumbelliferone glucuronide (4 MUG), E3040 sulfate (E-sul) and 4-methylumbelliferone sulfate (4 MUS) on the uptake of [3H]DNP-SG were also examined. The uptake of [3H]DNP-SG was inhibited by glucuronides (E-glu and 4 MUG) in a concentration-dependent manner, although it was enhanced by the sulfate conjugates (E-sul and 4 MUS). This enhancement was shown to be caused by an increased DNP-SG affinity for the transporter. In CMV from SD rats, although ATP-dependent uptake of [3H]DNP-SG was almost completely inhibited by E-glu, that of [14C]E-glu was only reduced to about 30% of controls by DNP-SG. On the other hand, in CMV from EHBR, the ATP-dependent uptake of [14C]E-glu was not inhibited at all by DNP-SG. Kinetic analysis indicated that E-glu inhibited DNP-SG uptake competitively. In conclusion: 1) cMOAT recognizes both DNP-SG and E-glu, and another transporter present in SD rats is also involved in E-glu transport along with cMOAT; 2) the latter transporter is kinetically similar to the E-glu transporter present in EHBR; 3) E-sul enhances the uptake of DNP-SG by increasing the affinity of glucuronide for the transporter.  相似文献   

2.
The first-pass clearance of dietary N-nitrosodimethylamine (NDMA) by the liver is the most important factor in the pharmacokinetics of this carcinogen in the rat, but is less important in the pharmacokinetics of N-nitrosodiethylamine (NDEA). The reason for the difference in clearance of these two nitrosamines is not known. These experiments were carried out to see whether the general characteristics of the clearance of these two carcinogens in vivo could be reproduced in the perfused liver, and whether the clearance could be correlated with the Michaelis-Menten parameters Km and Vmax for their metabolism. If this could be done one would be able to predict the possible extent of first-pass clearance of nitrosamines in man from measurement of Km and Vmax for nitrosamine metabolism by the human liver. The Km (22 microM) and Vmax (10.2 and 13.4 nmol/g liver/min) for the metabolism of NDMA by slices from two human livers, the inhibition of that metabolism by ethanol (Ki 0.5 microM), and the rate of N-7 methylation of DNA when slices are incubated with NDMA, were measured. These results are similar to those reported previously with rat liver. The Km (27 microM) for the metabolism of NDEA by rat liver slices and the inhibition of that metabolism by ethanol (Ki 1 microM) were estimated from the rate of ethylation of the DNA of the slices. The clearance of both these nitrosamines by the perfused rat liver was measured, and the results appeared to parallel those in vivo with a striking difference between the clearance of NDMA and NDEA. The maximal rate of clearance of NDMA was 11.2 nmol/g liver/min and of NDEA 8.9 nmol/g liver/min, similar to the Vmax for metabolism of NDMA by liver slices and to the estimated maximal rate of liver metabolism of both nitrosamines in the living rat. However, although the Km for metabolism of these two nitrosamines by liver slices is similar (about 25 microM), the logarithmic mean sinusoidal concentration [see Bass and Keiding, Biochem Pharmacol 37: 1425-1431, 1988] giving half maximal clearance during perfusion (the equivalent to Km) was 2.3 microM for NDMA and 10.6 microM for NDEA. The almost 5-fold difference between these two values is the basis for the difference between the clearance of the two nitrosamines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Heavy metal intoxication leads to defects in cellular uptake mechanisms in the mammalian liver and kidney. We have studied the effects of several heavy metals, including mercury, lead, cadmium, and chromium (at concentrations of 1 to 1000 microM), on the activity of the mammalian sulfate transporter sat-1(2) in Xenopus oocytes. sat-1 encodes a sulfate/bicarbonate anion exchanger expressed in the rat liver and kidney. Mercury (10 microM) strongly inhibited sat-1 transport by reducing Vmax by eightfold but not its Km for inorganic sulfate (Si). Lead (up to 1 mM) was unable to significantly inhibit sat-1 transporter activity. Cadmium (500 microM) showed weak inhibition of sat-1 transport by decreasing only sat-1 Vmax. Chromium (100 microM) strongly inhibited sat-1 transport by reducing Km for Si by sevenfold, most probably by binding to the Si site, due to the strong structural similarity between the CrO2-4 and SO2-4 substrates. This study presents the first characterization of heavy metal inhibition of the hepatic and renal sulfate/bicarbonate transporter sat-1, through various mechanisms, which may lead to sulfaturia following heavy metal intoxication.  相似文献   

4.
In mammals, catechol-O-methyltransferase (COMT) is distributed throughout various organs, the highest activities being found in the liver and kidney. However, comparisons of the kinetic parameters are difficult to perform, since the experimental procedures in the enzyme assay vary quite considerably. The present work was aimed at studying the optimal liver COMT assay conditions for determining the kinetics of the enzyme. The COMT assay was performed with liver homogenates from 60 days old male Wistar rats with adrenaline (AD) as the substrate. Time course experiments using 100 microM S-adenosyl-L-methionine (SAMe) and 300 microM AD showed linearity of O-methylation reaction upto 10 min. Using 100 microM SAMe, Vmax (nmol mg protein-1 h-1) and Km (microM) values progressively decreased respectively from 22.1 and 104.8 at 5 min down to 5.8 and 24.62 at 60 min incubation periods. This decrease was not due to end-product inhibition. Using 2500 microM AD, Km values (microM) for the methyl donor SAMe increased progressively from 174 at 5 min upto 1192.5 at 60 min; upto 30 min of incubation Vmax values did not change. When a 5 min incubation period and 500 microM SAMe were used, Vmax and Km values for liver COMT were 63.4 nmol mg protein-1 h-1 and 261.1 microM, respectively. It is concluded that an incubation period of 5 min and a SAMe concentration of 500 microM provide optimal conditions for the liver homogenate COMT assay.  相似文献   

5.
Inhibition of estrone sulfatase activity offers the potential for breast cancer prevention therapy by blocking a route to estrogen synthesis. We have investigated the inhibition of this activity by natural flavonoids in a human hepatic microsomal preparation in vitro. The majority of studies were performed with a male liver, but male and female livers exhibited comparable estrone sulfatase activities. The natural flavonoids, quercetin, kaempferol, and naringenin, significantly inhibited estrone sulfatase activity with I50 < 10 microM for the most potent, quercetin. Estrone sulfatase activity in the liver microsomes was biphasic, with a high affinity, low capacity, low concentration activity (Km 14.3 microM, Vmax 0.5 nmol/min/mg protein), probably steroid sulfatase-catalysed, and a low affinity, high capacity, high concentration activity (Km 1.5 mM, Vmax 21.5 nmol/min/mg protein), probably arylsulfatase C or E-catalysed. The former activity was inhibited uncompetitively by quercetin, the latter competitively. Quercetin, a natural dietary constituent, is a potent inhibitor of estrone sulfatase in vitro, and thus has the potential to express antiestrogenic activity in vivo.  相似文献   

6.
In the present study, we expressed human flavin-containing monooxygenase 1 (FMO1), FMO3, FMO4t (truncated), and FMO5 in the baculovirus expression vector system at levels of 0.6 to 2.4 nmol FMO/mg of membrane protein. These four isoforms, as well as purified rabbit FMO2, and eleven heterologously expressed human P450 isoforms were examined for their capacity to metabolize trimethylamine (TMA) to its N-oxide (TMAO), using a new, specific HPLC method with radiochemical detection. Human FMO3 was by far the most active isoform, exhibiting a turnover number of 30 nmol TMAO/nmol FMO3/min at pH 7.4 and 0.5 mM TMA. None of the other monooxygenases formed TMAO at rates greater than 1 nmol/nmol FMO/min under these conditions. Human fetal liver, adult liver, kidney and intestine microsomes were screened for TMA oxidation, and only human adult liver microsomes provided substantial TMAO-formation (range 2.9 to 9.1 nmol TMAO/mg protein/min, N = 5). Kinetic studies of TMAO formation by recombinant human FMO3, employing three different analytical methods, resulted in a Km of 28 +/- 1 microM and a Vmax of 36.3 +/- 5.7 nmol TMAO/nmol FMO3/min. The Km determined in human liver microsomes ranged from 13.0 to 54.8 microM. Therefore, at physiological pH, human FMO3 is a very specific and efficient TMA N-oxygenase, and is likely responsible for the metabolic clearance of TMA in vivo in humans. In addition, this specificity provides a good in vitro probe for the determination of FMO3-mediated activity in human tissues, by analyzing TMAO formation at pH 7.4 with TMA concentrations not higher than 0.5 mM.  相似文献   

7.
The systemic clearance of many quinolone antibiotics is mainly via metabolism and urinary excretion; by contrast, biliary excretion is a major route of elimination for a new quinolone grepafloxacin (GPFX). Accordingly, we studied the hepatic uptake of GPFX because it is the first step in the drug's hepatobiliary transport. The hepatic uptake of GPFX in vivo after i.v. administration was found to approach the hepatic blood flow, suggesting the existence of an effective hepatic uptake mechanism. To clarify this transport mechanism, GPFX uptake by isolated rat hepatocytes was examined and found to consist of a saturable component (Km 173 microM, Vmax 6.96 nmol/min/mg) and a nonspecific diffusion component. The inhibition of GPFX uptake by ATP-depletors and a lack of effect after replacing Na+ with choline demonstrated that the uptake was an Na+-independent carrier-mediated active process. This uptake was inhibited by other quinolones and for lomefloxacin this was competitive in nature. Mutual inhibition studies were undertaken to investigate whether the transporter for GPFX might be the same as other transporters so far identified. GPFX inhibited the uptake of taurocholic acid, pravastatin (organic anion), cimetidine (organic cation) and ouabain (neutral steroid). However, GPFX uptake was not inhibited by these compounds. Confirmation that GPFX uptake is blood flow limited was obtained by extrapolation of the in vitro data based on mathematical modeling. In conclusion, the effective hepatic uptake of quinolone antibiotics are via carrier-mediated active transport, which is distinct from that involved in the transport of bile acids, organic anions, organic cations or neutral steroids.  相似文献   

8.
Our laboratory has shown that human liver microsomes metabolize the anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) via a P450-type reductive reaction to a toxic metabolite 3'-amino-3'-deoxythymidine (AMT). In the present study, we examined the role of specific human P450s and other microsomal enzymes in AZT reduction. Under anaerobic conditions in the presence of NADPH, human liver microsomes converted AZT to AMT with kinetics indicative of two enzymatic components, one with a low Km (58-74 microM) and Vmax (107-142 pmol AMT formed/min/mg protein) and the other with a high Km (4.33-5.88 mM) and Vmax (1804-2607 pmol AMT formed/min/mg). Involvement of a specific P450 enzyme in AZT reduction was not detected by using human P450 substrates and inhibitors. Antibodies to human CYP2E1, CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2A6 were also without effect on this reaction. NADH was as effective as NADPH in promoting microsomal AZT reduction, raising the possibility of cytochrome b5 (b5) involvement. Indeed, AZT reduction among six human liver samples correlated strongly with microsomal b5 content (r2 = 0.96) as well as with aggregate P450 content (r2 = 0.97). Upon reconstitution, human liver b5 plus NADH:b5 reductase and CYP2C9 plus NADPH:P450 reductase were both effective catalysts of AZT reduction, which was also supported when CYP2A6 or CYP2E1 was substituted for CYP2C9. Kinetic analysis revealed an AZT Km of 54 microM and Vmax of 301 pmol/min for b5 plus NADH:b5 reductase and an AZT Km of 103 microM and Vmax of 397 pmol/min for CYP2C9 plus NADPH:P450 reductase. Our results indicate that AZT reduction to AMT by human liver microsomes involves both b5 and P450 enzymes plus their corresponding reductases. The capacity of these proteins and b5 to reduce AZT may be a function of their heme prothestic groups.  相似文献   

9.
The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA), accumulates in uremic plasma and inhibits the binding of various drugs and marker ligands that are organic acids. 5-Propyl FPA is excreted unchanged in human urine and active tubular secretion is likely to be involved because of its high affinity for albumin. The uptake of 5-propyl FPA by rat kidney slices has been measured and compared with that of p-aminohippurate (PAH). The mean (+/- S.D.) slice/medium ratio for uptake of 5-propyl FPA (76 microM) was 22.7 +/- 2.6 (n = 11) and for PAH (75 microM) was 15.9 +/- 3.2 (n = 9) after incubation for 90 min at 25 degrees C. 5-Propyl FPA (149-829 microM) inhibited the uptake of PAH (77 microM) in a concentration-dependent manner, and likewise, PAH (150-830 microM) inhibited the uptake of 5-propyl FPA (77 microM). The mean apparent Km and Vmax values for the uptake of 5-propyl FPA were 194 +/- 125 microM and 55 +/- 28 nmol/g kidney/min, respectively, and 487 +/- 179 and 99 +/- 46 nmol/g kidney/min, respectively, for PAH. The kinetics of inhibition of uptake of PAH by 5-propyl FPA were mainly competitive. 5-Propyl FPA is thus likely to undergo active tubular secretion in a similar way to PAH, and this furan dicarboxylic acid, therefore, has the potential to inhibit the renal excretion of various drugs, drug conjugates and other endogenous organic acids.  相似文献   

10.
We measured uptake of a representative free fatty acid, oleate, by the single-pass perfused rat liver at oleate:albumin molar ratios of 0.01 to 2:1. For each ratio, uptake was studied at albumin concentrations from 50 to 600 microM. When uptake velocity was plotted as a function of the albumin concentration, the data at each ratio exhibited a pseudosaturation pattern as previously observed in isolated cells (J Clin Invest 84: 1325). At a physiologic albumin concentration of 600 microM, a plot of uptake vs. unbound oleate concentrations was best fitted by the Michaelis-Menten equation (Vmax = 235 +/- 8.8 nmol.min-1.g.liver-1; Km = 130 +/- 12 nM). As the albumin concentration was increased from 50 to 250 microM, the unbound oleate clearance, calculated by either the undistributed sinusoidal or venous equilibrium models, increased progressively, in violation of conventional pharmacokinetic theory, indicating an enhancing effect of albumin on ligand uptake at low albumin concentrations. In contrast, there was no significant difference between measures of unbound clearance at albumin concentrations of 350 and 600 microM. To explain this phenomenon, the clearance data were examined for evidence of facilitation (accelerated dissociation of ligand:albumin complexes) by the clearance ratio test ("square root rule"). All deviations from the predictions of conventional theory were entirely attributable to pseudofacilitation. No data required explanation by a true facilitation model.  相似文献   

11.
Epinastine is a non-sedative second-generation antiallergic drug, like terfenadine. In the present study, the metabolism of epinastine in human liver microsomes was investigated and compared with that of terfenadine. Terfenadine was extensively metabolized to terfenadine acid with a Km value of 1.78 microM, a Vmax value of 173.8 pmol/min/mg and a metabolic clearance (Vmax/Km) of 103.9. Epinastine, in contrast, was poorly metabolized by microsomes from the same source with a high Km value of 232 microM. Metabolic clearance of epinastine was only 0.832, which was lower by three orders of magnitude than that of terfenadine. Studies with microsomes expressing recombinant cytochrome P450 (CYP) species revealed that the CYP isoforms responsible for epinastine metabolism are CYP3A4, 2D6 and (to a minor extent) 2B6. Epinastine and terfenadine had no effect on CYP1A2 (theophylline 1-demethylation), 2C8/9 (tolbutamide hydroxylation) or 2E1 (chlorzoxazone 6-hydroxylation) activity, but weakly inhibited CYP2D6 (debrisoquine 4-hydroxylation) activity. CYP3A4 (testosterone 6 beta-hydroxylation) activity was strongly inhibited by terfenadine with a Ki value of 25 microM, whereas epinastine had no effect at up to 100 microM. Thus, epinastine is very poorly metabolized compared to terfenadine in human liver microsomes and does not inhibit CYP3A4 activity in vitro, unlike terfenadine.  相似文献   

12.
Anandamide (N-Arachidonoylethanolamine) amidohydrolase catalyzing hydrolysis of anandamide was characterized in mice. The enzymatic activity was highest in the liver, followed by the brain and testis. Negligible activity was found in heart, lung and spleen. The activity in brain and liver was mainly localized in the microsomal fractions. Kinetic experiments demonstrated that Km (microM) and Vmax (nmol/min/mg protein) for the brain microsomes were 9.3 and 2.58, respectively, while those for the hepatic microsomes were 180 and 18.9, respectively. The activity in the microsomes from the liver and brain was markedly inhibited by Cu2+, Hg2+, Se4+, phenylmethylsulfonylfluoride and sodium dodecylsulfate. Brain but not hepatic microsomal enzyme activity was inhibited by delta9-tetrahydrocannabinol, cannabidiol and cannabinol. Kinetic parameters demonstrated that the inhibition by the cannabinoids was competitive in nature. Relatively high distribution of the enzyme activity in brain suggests an importance of the enzyme in the central nervous system to regulate the neuromodulatory fatty-acid amides.  相似文献   

13.
PURPOSE: To compare the activity of the CYP3A enzyme expressed by TC7, a cell culture model of the intestinal epithelial cell, to the activity of human intestinal CYP3A4, using terfenadine as a substrate. METHODS: The metabolism of terfenadine was investigated in intact cells and microsomal preparations from TC7, human intestine, and liver. The effect of two CYP3A inhibitors, ketoconazole and troleandomycin (TAO), on the metabolism of terfenadine was also examined. RESULTS: Only hydroxy-terfenadine was detected in TC7 microsomal incubations. In contrast, azacyclonol and hydroxy-terfenadine were detected in human intestinal and hepatic microsomal incubations. The Km values for hydroxy-terfenadine formation in TC7 cells, intestine and liver microsomes were 1.91, 2.5, and 1.8, microM respectively. The corresponding Vmax values were 2.11, 61.0, and 370 pmol/min/mg protein. Km values for azacyclonol in intestinal and hepatic samples were 1.44 and 0.82 microM and the corresponding Vmax values were 14 and 60 pmol/min/mg protein. The formation of hydroxy-terfenadine was inhibited by ketoconazole and TAO in human intestine and TC7 cell microsomes. The Km and Vmax values for terfenadine metabolism in intact TC7 cells were similar to those from TC7 cell microsomes. CONCLUSIONS: Our results indicate that TC7 cells are a potentially useful alternative model for studies of CYP3A mediated drug metabolism. The CYP3A expressed by TC7 cells is not CYP3A4, but probably CYP3A5, making this cell line suitable for studies of colonic drug transport and metabolism.  相似文献   

14.
Vinyl fluoride (VF) is an inhalation carcinogen at concentrations of 25 ppm or greater in rats and mice. The main neoplastic lesion induced in rodents was hepatic hemangiosarcomas, and mice were more sensitive than rats. In a first set of experiments, groups of three rats or five mice were exposed to VF in a closed-chamber gas uptake system at starting concentrations ranging from 50 to 250 ppm. Chamber concentrations of VF were measured every 10-12 min by gas chromatography. Partition coefficients were determined by the vial equilibration technique and used as parameters for a physiologically based pharmacokinetic (PBPK) model. Mice showed a higher whole-body metabolic capacity compared to rats (Vmax = 0.3 vs 0.1 mg/hr-kg). Both species had an estimated Km of < or = 0.02 mg/liter. The specificity for the oxidation of VF in vivo was determined by selective inhibition or induction of CYP 2E1. Inhibition with 4-methylpyrazole completely impaired VF uptake in rats and mice, whereas induction with ethanol (rats only) increased the metabolic capacity by two- to threefold. The pharmacokinetics of VF were also investigated in vitro. Microsomes from rat and mouse liver were incubated in a sealed vial with VF and an NADPH-regenerating system. Headspace concentrations (10-300 ppm) were monitored over time by gas chromatography. Consistent with the in vivo data, VF was metabolized faster by mouse microsomes than by rat microsomes (Vmax = 3.5 and 1.1 nmol/hr-mg protein, respectively). The rates of metabolism by human liver microsomes were generally in the same range as those found with rat liver microsomes (Vmax = 0.5-1.3 nmol/hr-mg protein), but one sample was similar to mice (Vmax = 3.3 nmol/ hr-mg protein). Metabolic rates in human microsomes were found to correlate with the amount of CYP 2E1 as determined by Western blotting and by chlorzoxazone 6-hydroxylation. It is concluded that the greater metabolic capacity of mice for VF both in vivo and in vitro may contribute to their greater susceptibility to tumor formation. CYP 2E1 is clearly the main isozyme involved in the oxidation of VF in all species tested. VF pharmacokinetics and metabolism in humans may depend upon the interindividual variability in the expression level of CYP 2E1. The excellent correspondence between in vivo and in vitro kinetics in rodents improves. substantially the degree of confidence for human in vivo predictions from in vitro data.  相似文献   

15.
We studied the effect of a number of amino acids on uptake of L-triiodothyronine (T3) in the human choriocarcinoma cell line, JAR. Tryptophan inhibited saturable T3 uptake by about 57% without any significant effect on the non-saturable uptake. Michaelis constant (Km) for T3 uptake was 1.06 +/- 0.15 microM (n = 15) with the corresponding maximum velocity (Vmax) of 24.2 +/- 3.1 pmol/min/mg cellular protein. For tryptophan uptake the Km was 1.31 +/- 0.26 microM (n = 7) and Vmax was 166.4 +/- 35.7 pmol/min/mg protein. The kinetic parameters for both uptake processes were similar to those reported in normal placenta. Uptake of T3 was inhibited by tryptophan but not phenylalanine, but tryptophan uptake was inhibited both by T3 and phenylalanine. Inhibition of T3 uptake by tryptophan was dose dependent, with an inhibition constant (Ki) of 2.9 +/- 0.5 mM. Similarly, tryptophan uptake was inhibited by T3 and phenylalanine in a dose dependent way with Ki values of 4.9 +/- 0.5 microM and 15.6 +/- 4.8 microM respectively. Km for T3 uptake was significantly increased to 1.86 +/- 0.42 microM (n = 4) in the presence of 3 mM unlabelled tryptophan and, similarly, Km for tryptophan uptake was significantly increased to 9.91 +/- 2.57 microM (n = 3) in the presence of 5 microM unlabelled T3. Efflux of T3 was progressively inhibited by increasing concentrations of both ligands, i.e. was saturable. We conclude that there is mutual competitive inhibition between uptake systems for T3 and tryptophan in JAR cells, but the kinetic parameters of cross-inhibition of uptake by the substrates suggest that the carriers are distinct. T3 may be transported in JAR cells by at least two transport systems with differing substrate specificities. We also demonstrated the presence of a saturable membrane carrier mediating the efflux of T3 from the cells which was subject to trans-inhibition by T3 and tryptophan.  相似文献   

16.
During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.  相似文献   

17.
Comparison of 7-hydroxylation of coumarin, a CYP2A6 substrate, in human and African green and cynomolgus monkey liver microsomes was made by means of an HPLC assay with UV detection. In human liver microsomes, the Km and Vmax values for the metabolic conversion were 2.1 microM and 0.79 nmol/mg/min, respectively. While African green monkey showed Km and Vmax values of 2.7 microM and 0.52 nmol/mg/min, which were similar to human, higher Km and Vmax values were found in cynomolgus monkey. Coumarin 7-hydroxylation in human and African green monkey was selectively inhibited by methoxsalen and pilocarpine (CYP2A6 inhibitors) but not by other inhibitors, i.e. alpha-naphthoflavone (CYP1A1), orphenadrine (CYP2B6), sulfaphenazole (CYP2C9), quinidine (CYP2D6) and ketoconazole (CYP3A4). Immunoinhibition results supported CYP2A6 involvement in human and its homolog in monkey in coumarin 7-hydroxylation, as only anti-CYP2A6, but not CYP2B1, CYP2C13, CYP2D6, CYP2E1 or CYP3A antibodies, inhibited this conversion. African green monkey was found to be similar to human in catalytic activity of coumarin 7-hydroxylation and response to CYP2A6 inhibitors or antibody inhibition. However, the monkey CYP2A6 is not identical to the human in that Ki values were different, and differences were observed with some CYP2A6 inhibitors, such as nicotine and methoxsalen, suggesting that, under some circumstances, studies of nicotine kinetics and drug taking behavior in monkey may not be comparable to human.  相似文献   

18.
(+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502) was oxidized by human liver microsomes to produce the S-oxide as a sole metabolite. Indirect evidence suggested that the S-oxidation was catalyzed by cytochrome P450 (CYP). Eadie-Hofstee plots showed biphasic pattern, suggesting that at least two enzymes were involved in the S-oxidation in human liver microsomes. Kinetic parameters of the S-oxidase with high-affinity showed Km and Vmax values of 20.9 +/- 4.4 microM and 0.111 +/- 0.051 nmol/min/mg microsomal protein, respectively. The S-oxidase activity was inhibited by coumarin and anti-CYP2A antibody. Among the contents of forms of CYP 20 samples of human liver microsomes, the content of CYP2A6 correlated with S-oxidase activity measured with 50 microM SM-12502 (r = .808, P < .0005). A close correlation (r = .908, P < .0001) was observed between activities of SM-12502 S-oxidase and coumarin 7-hydroxylase. Microsomes from genetically engineered human B-lymphoblastoid cells expressing CYP2A6 metabolized SM-12502 to the S-oxide efficiently. The results indicate that CYP2A6 isozyme is a major form of CYP responsible for the S-oxidation of SM-12502 in human liver microsomes. Thus, SM-12502 will be a useful tool in further research to analyze a human genetic polymorphism of CYP2A6.  相似文献   

19.
In this study, we have examined the transport characteristics of the wild-type lactose permease, single mutants in which Lys-319 was changed to asparagine or alanine or Glu-325 was changed to glutamine or alanine, and the corresponding double mutant strains. The wild-type and Asn-319 mutant showed high levels of lactose uptake, with Km values of 0.42 and 1.30 mM and Vmax values of 102.6 and 48.3 nmol of lactose/min/mg of protein, respectively. The Asn-319/Gln-325 strain had a normal Km of 0.36 mM and a moderate Vmax of 18.5 nmol of lactose/min/mg of protein. By comparison, the single E325Q strain had a normal Km of 0.27 mM but a very defective Vmax of 1.3 nmol of lactose/min/mg of protein. A similar trend was observed among the alanine substitutions at these positions, although the Vmax values were lower for the Ala-319 mutations. When comparing the Vmax values between the single position 325 mutants with those of the double mutants, these results indicate that neutral 319 mutations substantially alleviate a defect in Vmax caused by neutral 325 mutations. With regard to H+/lactose coupling, the wild-type permease is normally coupled and can transport lactose against a gradient. The position 325 single mutants showed no evidence of H+ transport with lactose or thiodigalactoside (TDG) and were unable to facilitate uphill lactose transport. The single Asn-319 mutant and double Asn-319/Gln-325 mutant were able to transport H+ upon the addition of lactose or TDG. In addition, both of these strains catalyzed a sugar-dependent H+ leak that inhibited cell growth in the presence of TDG. These two strains were also defective in uphill transport, which may be related to their sugar-dependent leak pathway. Based on these and other results in the literature, a model is presented that describes how the interactions among several ionizable residues within the lactose permease act in a concerted manner to control H+/lactose coupling. In this model, Lys-319 and Glu-325 play a central role in governing the ability of the lactose permease to couple the transport of H+ and lactose.  相似文献   

20.
A directly energized vacuolar pump for glutathione (GS) conjugates has been described for several plant species. Since glucuronate conjugates also occur in plants, we addressed the question whether plant vacuoles take up the abiotic glucuronate conjugate estradiol 17-(beta-glucuronide) (E217G) via a GS conjugate pump, which in some cases has been reported to accept various organic anions as substrates, or via a distinct glucuronate transporter. Uptake studies into vacuoles from rye and barley were performed with E217G and metolachlor-GS (MOC-GS), a substrate of the GS conjugate ATPase, to compare glucuronate conjugate transport into vacuoles containing endogenous flavone glucuronides with those lacking specific glucuronate conjugates, respectively. Our results indicate that E217G and MOC-GS are taken up into vacuoles of both plants via a directly energized mechanism since transport was (i) strictly ATP-dependent; (ii) inhibited by vanadate but not by bafilomycin A1, azide, verapamil, nor by dissipation of the vacuolar DeltapH or DeltaPsi; (iii) E217G uptake into rye vacuoles was partially driven by other nucleotides in the following order of efficiency: ATP > GTP > UTP congruent with CTP, whereas the non-hydrolyzable ATP analogue 5'-adenylyl-beta,gamma-imidodiphosphate, ADP, or PPi did not energize uptake. E217G transport into rye vacuoles was saturable (Km approximately 0.2 mM). The rye-specific luteolin glucuronides decreased uptake rates of E217G and MOC-GS into rye and barley vacuoles to comparable degrees with the mono- and diglucuronidated derivatives (40-60% inhibition) being more effective than the triglucuronide. Inhibition of E217G uptake by luteolin 7-O-diglucuronide was competitive (Ki = 120 microM). Taurocholate had no effect on E217G transport, and uptake of MOC-GS was not inhibited by E217G. Although GS conjugates and oxidized GS decreased MOC-GS transport, E217G uptake into rye and barley vacuoles was stimulated up to 7-fold in a concentration-dependent manner by these substances, with dinitrobenzene-GS being most effective. The stimulation of the GS conjugates was not due to detergent or redox effects and was specific for the E217G pump. GS conjugate stimulation of glucuronate uptake was unique for plants as E217G uptake into yeast microsomal vesicles was not affected. By comparison with a DeltaYCF1 yeast mutant, defective in vacuolar transport of GS conjugates mediated by YCF1, it was shown that E217G was taken up into yeast vesicles via a YCF1-independent directly energized pump. These results indicate that E217G as a glucuronate conjugate is transported across the vacuolar membranes of plants and yeast by a carrier distinct from the GS conjugate ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号