首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the structural characteristics of the composites [Pb(Fe0.5Nb0.5)O3(PFN)] x -[Cr0.75Fe1.25O3(CRFO)]100?x (x = 0 (CRFO100), 10, 50, 90, 100) was performed in this work. The compounds PFN100 and CRFO100 were prepared by conventional solid-state method and investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and 57Fe Mössbauer Spectroscopy techniques. The X-ray analysis shows that PFN100 is tetragonal and the CRFO100 phase has a trigonal symmetry. The refinement of all the composites was also performed and discussed in this paper. The Mössbauer spectrum for the composite samples shows a paramagnetic doublet and a sextet probably assigned to a magnetic phase associated to Fe+3. For the sample PFN100, only a magnetic field of 49.5 T (isomer shift (δ) = 0.21 mm/s) was detected. For the composite sample, the δ and Δ are typical of Fe ions at sites of octahedral coordination.  相似文献   

2.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

3.
Multiferroic properties of La-modified four-layered perovskite Bi5?x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5?x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.  相似文献   

4.
Single phase samples of Ni(Cr1?xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1?xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.  相似文献   

5.
NASICON-type materials with the compositions Na3V2–xAlx(PO4)3, Na3V2 - xFex(PO4)3, Na3 + xV2–xNix(PO4)3, and Na3V2 - xCrx(PO4)3 (x = 0, 0.03, 0.05, and 0.1) have been prepared and characterized by X-ray diffraction analysis, electron microscopy, and impedance spectroscopy. The results demonstrate that the highest electrical conductivity among the samples studied is offered by the material doped with 5% Fe: Na3V1.9Fe0.1(PO4)3. The activation energy for low-temperature conduction in the doped materials decreases from 84 ± 2 to 54 ± 1 kJ/mol and that for high-temperature conduction is ~33 kJ/mol. The discharge capacity of Na3V1.9Fe0.1(PO4)3/C under typical working conditions of cathodes of sodium ion batteries has been shown to exceed that of Na3V2(PO4)3/C. The capacity of the more porous material prepared by the Pechini process (Na3V1.9Fe0.1(PO4)3/C-{II}) approaches the theoretical one at a low charge–discharge rate and retains its high level as the charge rate is raised (its discharge capacity was 117.6, 108.8, and 82.6 mAh/g at a discharge rate of 0.1C, 2C, and 8C, respectively).  相似文献   

6.
In order to obtain high temperature coefficient of resistance (TCR) value of La0.67Ca0.33MnO3:Ag x (LCMO:Ag x ) composites, samples with different Ag contents (x?=?0, 0.1, 0.2, 0.25, 0.3, and 0.5) were prepared by sol–gel method. X-ray diffraction analyses indicated that all samples had orthorhombic perovskite structures. As x increased, lattice parameters (a, b, c) and cell volumes underwent slight expansions. Interestingly, the addition of Ag dramatically affected TCR and magneto-resistance (MR) values. Elevated TCR value up to 53.46%·K?1 at 277 K was observed for LCMO:Ag x composites with added Ag at the composition of x?=?0.1. Meanwhile, MR value at 263 K reached 71% at the magnetic field of 1 T for samples with Ag composition of x?=?0.25. The increase in Mn4+/Mn3+ ratio and improvement in crystallization caused by added Ag was found responsible for the elevated values of TCR, MR, and Tp. These findings may have practical use in high-performance magneto-resistive manganites.  相似文献   

7.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

8.
The Bi1?+?xFe0.95Cr0.05O3 (BFCO) (x?=?0, 5, 10, 15 and 20%) thin films are fabricated on FTO/glass substrate using a chemical solution deposition method and sequential-layer annealing process. The effects of the excess Bi content on crystalline structure, morphology, and electrical performance of BFCO thin films are investigated. All the BFCO thin films are crystallized into polycrystalline perovskite structure and belonging to the space group of R3c. The BFCO thin films with 5 and 10% excess Bi contents possess no impurity phase. Especially, a dense surface morphology and columnar crystal structure can be obtained for the film with 5% excess Bi content. Especially, the one possesses superior ferroelectricity with a relative high remnant polarization (P r) of 69.8 µC/cm2 and low coercive electric field (E c) of 291 kV/cm at 1 kHz due to the relatively low leakage current density of 3.04?×?10??5 A/cm2 at 200 kV/cm.  相似文献   

9.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

10.
In order to study the effect of co-substitution of Al3 + and Cr3 + for Fe3+ in MgFe2O4 on its structural and magnetic properties, the spinel system MgAl x CrxFe2 ? 2xO4 (x = 0.0–0.8) has been characterized by X-ray diffraction, high field magnetization, low field a.c. susceptibility and 57Fe Mössbauer spectroscopy measurements. Contrary to the earlier reports, about 50% of Al3 + is found to occupy the tetrahedral sites. The system exhibits canted spin structure and a central paramagnetic doublet was found superimposed on the magnetic sextet in the Mössbauer spectra (0.5 > x > 0.2). Thermal variation of a.c. susceptibility exhibits normal ferrimagnetic behaviour.  相似文献   

11.
In this work, (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3xmol MnO (BCTS–xMn) lead-free piezoelectric ceramics were fabricated by the conventional solid-state technique. The composition dependence (0 ≤ x ≤ 3.0 %) of the microstructure, phase structure, and electrical properties was systematically investigated. An O–T phase structure was obtained in all ceramics, and the sintering behavior of the BCTS ceramics was gradually improved by doping MnO content. In addition, the relationship between poling temperature and piezoelectric activity was discussed. The ceramics with x = 1.5 % sintering at temperature of 1330 °C demonstrated an optimum electrical behavior: d 33 ~ 475 pC/N, k p ~ 50 %, ε r ~ 4060, tanδ ~ 0.4 %, P r ~ 10.3 μC/cm2, E c ~ 1.35 kV/mm, T C ~ 82 °C, strain ~0.114 % and \(d_{33}^{*}\) ~ 525 pm/V. As a result, we achieved a preferable electric performance in BaTiO3-based ceramics with lower sintering temperature, suggesting that the BCTS–xMn material system is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

12.
In this work, the nominal CaCu3?xMgxTi4.2O12 (0.00, 0.05 and 0.10) ceramics were prepared by sintering pellets of their precursor powders obtained by a polymer pyrolysis solution method at 1100 °C for different sintering time of 8 and 12 h. Very low loss tangent (tanδ)?<?0.009–0.014 and giant dielectric constant (ε′) ~?1.1?×?104–1.8?×?104 with excellent temperature coefficient (Δε′) less than ±?15% in a temperature range of ??60 to 210 °C were achieved. These excellent performances suggested a potent application of the ceramics for high temperature X8R and X9R capacitors. It was found that tanδ values decreased with increasing Mg2+ dopants due to the increase of grain boundary resistance (Rgb) caused by the very high density of grain, resulting from the substitution of small ionic radius Mg2+ dopants in the structure. In addition, CaCu3?xMgxTi4.2O12 ceramics displayed non-linear characteristics with the significant enhancements of a non-linear coefficient (α) and a breakdown field (Eb) due to Mg2+doping. The high values of ε′ (14012), α (13.64) and Eb (5977.02 V/cm) with very low tanδ value (0.009) were obtained in a CaCu2.90Mg0.10Ti4.2O12 ceramic sintered at 1100 °C for 8 h.  相似文献   

13.
Single-phase samples of Mn(Cr1?x Al x )2O4 (x = 0 – 0.30) with cubic spinel structure were prepared and the lattice constant is found to decrease from a = 8.4396 Å for x = 0 to a = 8.3801 Å for x = 0.30. The substitution of Al at Cr site is confirmed from the blue shift of Raman modes. Magnetization measurements and analysis show all the prepared samples exhibit ferrimagnetic transition with transition temperature in the range of 46 K for x = 0 to 33 K for x = 0.30. The saturation magnetization (M s ) and the estimated anisotropy constant (K) show an anomalous behavior up to x = 0.10 and beyond that they decrease monotonously. They are explained by considering different site preferences of Al 3+ ions as the doping concentration is increased. The theoretical and experimental effective magnetic moment of the samples is found to be comparable and it decreases with increase in Al concentration.  相似文献   

14.
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ~98 K (x = 0.1) to ~122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ~121 K (x = 0.1) to ~170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ~170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g ?electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.  相似文献   

15.
The compositions in Sr2Ca3Ta4Ti1?xZrxO17 (0?≤?x?≤?0.12) series were designed and fabricated by solid state sintering method. All the compositions formed single phases and crystallized in an orthorhombic crystal structure. Zr substitution led to the enhancing of the microwave dielectric properties by tuning the τf value through zero and increased the Qufo value from 12,540 to 14,970 GHz with a slight decrease in εr. In the present study, a good combination of εr ~?51, Qufo ~?145,43 GHz and τf ~ 3 ppm/°C were obtained for Sr2Ca3Ta4Ti0.90Zr0.1O17 ceramic sintered at 1575 °C for 4 h.  相似文献   

16.
Micropowders of melted and heat-treated Nd16(Fe76?x Ni x )B8 alloys system, with x = 0, 10, 20, and 25 (size distribution under 20 μm), were studied and compared with the study of nanopowders obtained, from the previous ones, by surfactant-assisted ball-milling process during 2 h. By XRD, a majority of Nd2Fe14B hard phase and a minority of α-Fe, Nd1.1Fe4B4 and NdNi2 phases were detected. The last one increases with Ni content. The crystallite size of the hard phase, in both types of samples, is not affected by the Ni content; however, the grains in micropowders are oblate, with a mean size of 37 nm, while those of the nanopowders are symmetric, with a mean size of 35 nm. Mössbauer spectra were fitted with seven sextets, which correspond to the six ferromagnetic sites of the hard phase and that of the α-Fe, and a doublet corresponding to the paramagnetic Nd1.1Fe4B4 phase. The mean hyperfine magnetic field, for both types of samples, decreases with Ni content. The hysteresis loops of both types of samples show a hard magnetic character, however, the coercive field and the M r/M s values for nanopowders are greater than those obtained for micropowders for all the Ni contents. Values of H c = 2 kOe and M r/ M s = 0.54 were obtained for nanopowders with 10 at.% Ni. From the hysteresis loops, which include the initial magnetization curve, Henkel plots for all the samples were obtained. These plots show that for micropowders, the predominant magnetic interaction is of dipolar type, while for nanopowders, the ferromagnetic exchange is the predominant one, which favored the magnetization.  相似文献   

17.
Different components of La0.7?x Ho x Sr0.3MnO3 (LHSMO, x = 0, 0.1, 0.2, 0.3) ceramics were fabricated by Plasma-Activated Sintering (PAS), so as to study the correlation between the contents of Ho3+ and the structural, electrical, magnetic properties. XRD and SEM confirmed that LHSMO ceramics prepared by PAS exhibited high-purity phase and dense microstructure. The measurement of electrical resistivity showed that the resistivity of LHSMO ceramics increased, and the metal–insulator transition temperature decreased with the increasing Ho-doping content. The resistivity data were then fitted using various empirical equations, and the conduction mechanism of LHSMO ceramics was found to be in accord with the electron–magnon scattering process in the low-temperature region and the small polaron hopping model in the high-temperature region. Lastly, we calculated the values of magnetoresistance of the LHSMO ceramics, which increased with increasing Ho-doping content, from 3.5% for x = 0 to 14.6% for x = 0.3. Therefore, the doping of Ho3+ into La0.7Sr0.3MnO3 can effectively enhance the low-field magnetoresistance effect.  相似文献   

18.
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor.  相似文献   

19.
A study to develop a new system of negative temperature coefficient thermistors for wide temperature range, A series of Mn-based perovskite-structured ceramics of composition (LaMn1?x Al x O3)0.9(Al2O3)0.1 has been synthesized by conventional solid state reaction at 1350?°C. The X-ray diffraction patterns showed that for all the samples, the substitution of manganese by aluminum up to x?=?0.1 preserved the rhombohedral perovskite LaMnO3-like phase. For x?=?0.2, apart from the LaMnO3-like structure, a second perovskite phase based on the cubic LaAlO3 structure was formed. For x?=?0.3 and 0.4, the phase present was LaAlO3 -type structure. The grain sizes of the sintered body detected by scanning electron microscope were decreased with increasing Al2O3 content. The resistivity increases with increasing the Al content. The obtained values of ρ 25?°C and B 25/50 and E a are in the range of 10–13103 Ω cm, 1813–2794 K, 0.156–0.241 eV, respectively. The resistance variation (ΔR/R) was <0.241% and the minimum value (0.0483%) was obtained for aging at 125?°C at 500 h. The aim of this work was explored new composite ceramics materials, which could be used as potential candidates for wide temperature range from ?100 to 500?°C thermistors applications.  相似文献   

20.
57Fe Mössbauer spectrum of conductive barium iron vanadate glass with a composition of 20BaO·10Fe2O3·70V2O5 (in mol%) showed paramagnetic doublet peak due to distorted FeIIIO4 tetrahedra with isomer shift (δ) value of 0.37 (±?0.01) mm s?1. Mössbauer spectra of 20BaO·10Fe2O3·xMoO3·(70???x)V2O5 glasses (x?=?20–50) showed paramagnetic doublet peaks due to distorted FeIIIO6 octahedra with δ’s of 0.40–0.41 (±?0.01) mm s?1. These results evidently show a composition-dependent change of the 3D-skeleton structure from “vanadate glass” phase, composed of distorted VO4 tetrahedra and VO5 pyramids, to “molybdate glass” composed of distorted MoO6 octahedra. After isothermal annealing at 500 °C for 60 min, Mössbauer spectra also showed a marked decrease in the quadrupole splitting (Δ) of FeIII from 0.70 to 0.77 to 0.58–0.62 (±?0.02) mm s?1, which proved “structural relaxation” of distorted VO4 tetrahedra which were randomly connected to FeO4, VO5, MoO6, FeO6 and MoO4 units by sharing corner oxygen atoms or edges. DC-conductivity (σ) of barium iron vanadate glass (x?=?0) measured at room temperature was 3.2?×?10?6 S cm?1, which increased to 3.4?×?10?1 S cm?1 after the annealing at 500 °C for 60 min. The σ’s of as-cast molybdovanadate glasses with x’s of 20–50 were ca. 1.1?×?10?7 or 1.2?×?10?7S cm?1, which increased to 2.1?×?10?2 (x?=?20), 6.7?×?10?3 (x?=?35) and 1.9?×?10?4 S cm?1 (x?=?50) after the annealing at 500 °C for 60 min. It was concluded that the structural relaxation of distorted VO4 tetrahedra was directly related to the marked increase in the σ, as generally observed in several vanadate glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号