首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, the quasi-static and cyclic fatigue fracture behavior of aluminum alloy 2014 discontinuously reinforced with fine particulates of aluminum oxide are presented and discussed. The discontinuous particulate-reinforced 2014 aluminum alloy was cyclically deformed under fully reversed, tension-compression loading over a range of strain amplitudes, well within the plastic domain of the engineering stress-strain curve, resulting in cyclic fatigue lives of less than 104 cycles. The influence of both ambient and elevated temperatures on cyclic stress and cyclic stress-strain response is highlighted. The underlying mechanisms governing the fracture mode during quasi-static and cyclic fatigue are discussed and rationalized in light of the concurrent and mutually interactive influences of intrinsic composite microstructural features, deformation characteristics of the metal matrix and reinforcement particulate, cyclic strain amplitude and resultant fatigue life, and test temperature. This article is based on a presentation made in the Symposium “Mechanisms and Mechanics of Composites Facture” held October 11–15, 1998, at the TMS Fall Meeting in Rosemont, Illinois, under the auspices of the TMS-SMD/ASM-MSCTS Composite Materials Committee.  相似文献   

2.
In this article, the quasi-static and cyclic fatigue fracture behavior of aluminum alloy 2014 discontinuously reinforced with fine particulates of aluminum oxide are presented and discussed. The discontinuous particulate-reinforced 2014 aluminum alloy was cyclically deformed under fully reversed, tension-compression loading over a range of strain amplitudes, well within the plastic domain of the engineering stress-strain curve, resulting in cyclic fatigue lives of less than 104 cycles. The influence of both ambient and elevated temperatures on cyclic stress and cyclic stress-strain response is highlighted. The underlying mechanisms governing the fracture mode during quasi-static and cyclic fatigue are discussed and rationalized in light of the concurrent and mutually interactive influences of intrinsic composite microstructural features, deformation characteristics of the metal matrix and reinforcement particulate, cyclic strain amplitude and resultant fatigue life, and test temperature. This article is based on a presentation made in the Symposium “Mechanisms and Mechanics of Composites Fracture” held October 11–15, 1998, at the TMS Fall Meeting in Rosemont, Illinois, under the auspices of the TMS-SMD/ASM-MSCTS Composite Materials Committee.  相似文献   

3.
The mechanism of porosity nucleation in pressure infiltration casting of metal-matrix composites (MMCs) is investigated. Five interfacial configurations are investigated for a variety of matrix/reinforcement systems. Interfaces with negative curvature such as cavity are found to be potential sites for porosity formation. The Al/Al2O3 system is most susceptible to porosity nucleation for the systems considered. Appropriate matrix alloying such as Mg in the Al/Al2O3 system and Mg and Cu in the Al/SiC system and reinforcement coatings such as Cu coating on SiC significantly reduce the contact angle, enhance wettability at the interface, and could be effective for suppressing porosity formation. Other effective methods include careful control of the cooling condition as well as the applied pressure.  相似文献   

4.
金属基复合材料是近几年来复合材料研究中的热点.文章综述了金属基复合材料的分类、性能特点、制备方法,总结了其主要进展及应用.  相似文献   

5.
The solidification behavior of ceramic particle-reinforced metal-matrix composites (MMCs) is different from that of the bare matrix, not only because of the presence of the ceramic particles, but also due to their redistribution in the melt that results in nonhomogeneous thermophysical properties. The MMCs comprised of 10-to 15-μm SiC particles of varying volume fractions, dispersed uniformly in a modified aluminum A356 alloy by the melt stirring technique, were solidified unidirectionally in a thermocouple-instrumented cylindrical steel mold. The cooling rates were continually monitored by measuring temperatures at different depths in the melt, and the solidified MMCs were sectioned into disks and chemically analyzed for SiC volume fraction. The results point out that the cooling rate increased with increasing volume fraction of SiC particles. A small increase in the bulk SiC volume fraction of the cast MMC was observed due to particle settling during solidification. A one-dimensional enthalpy model of MMC solidification was formulated, wherein particle settling occurring in the solidifying matrix was coupled to the enthalpy equation by means of the Richardson-Zaki hindered settling correlation. A comparative study of simulations with experiments suggested that the thermal response of SiC particles used in this study was similar to that of single crystals, and their presence increased the effective thermal conductivity of the composite.  相似文献   

6.
The effect of isothermal exposure and thermal cycling on the toughness of B/Al (1100), B/Al (6061), and A12O3/A1 composites has been investigated. In B/Al (1100), isothermal exposure at 773 K for 45 × 104 s (125 hours) reduced toughness, measured by the work of fracture, from 76 kJm-2 to 10 kJm-2, and a similar reduction occurred after equivalent thermal cycling. The corresponding reduction in toughness after isothermal exposure in B/Al (6061) was from 44.5 kJm-2 to 8 kJm-2; however, the effect of thermal cycling was less detrimental. In the FP-A12O3/A1 composite, the work of fracture was insensitive to both forms of thermal treatment. Changes in the toughness of the B/Al composites have been correlated with and analyzed in terms of modifications to matrix, fiber, and interface properties, in particular, matrix softening, interface reaction products, and fiber notch sensitivity. The latter currently on The latter currently on  相似文献   

7.
The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewskiet al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law. This article is based on a presentation made in the symposium entitled “Creep and Fatigue in Metal Matrix Composites” at the 1994 TMS/ASM Spring meeting, held February 28–March 3, 1994, in San Francisco, California, under the auspices of the joint TMS-SMD/ASM-MSD Composite Materials Committee.  相似文献   

8.
Pressureless infiltration of ceramic preforms by molten aluminum is described. The preforms are SiC with varying amounts of particulate Al, Ti, and Ni. Infiltrants employed are pure Al and Al-12.5 wt pct Si. It is shown that a pressure differential within the preform is required for infiltration, and measurements are made of pressure changes in the preforms during infiltration. Results indicate that atmospheric pressure is essential for infiltration but that capillarity may play a role as well. T. NUKAMI, formerly Research Assistant, Massachusetts Institute of Technology  相似文献   

9.
A generalized Eshelby model, allowing interaction among reinforcing particles under a Mori-Tanakalike scheme, is presented. Different inclusion aspect ratios are studied in the elastic and incipient elastoplastic regime for a model SiC-Al composite. The solution of the field equations is obtained via an explicit algorithm that yields the interaction field in terms of the stress and strain variables. The particles and fibers are taken as purely elastic, and the matrix is regarded as elastic-perfectly plastic. Coefficients of thermal expansion (CTE) are calculated both under the assumption of purely elastic response and at the onset of plastic localized deformation. The simulated stress-strain curves show the influence of interaction stresses on macroscopic yield stress for different inclusion aspect ratios, with no consideration of matrix hardening. The model allows a good simulation of the thermomechanical behavior of composite materials and contributes to the understanding of the elastoplastic transition in stress-strain curves. It can also simply explain some of the most distinctive features of the mechanical behavior of composites. The model presents the possibility of controlling many input variables and geometries and simultaneously considering three-dimensional deformation of interacting inclusion-reinforced materials with low computational effort. Comparisons to experimental CTE and residual stresses are provided.  相似文献   

10.
Fatigue crack growth in fiber-reinforced metal-matrix composites is modeled based on a crack tip shielding analysis. The fiber/matrix interface is assumed to be weak, allowing interfacial debonding and sliding to occur readily during matrix cracking. The presence of intact fibers in the wake of the matrix crack shields the crack tip from the applied stresses and reduces the stress intensity factors and the matrix crack growth rate. Two regimes of fatigue cracking have been simulated. The first is the case where the applied load is low, so that all the fibers between the original notch tip and the current crack tip remain intact. The crack growth rate decreases markedly with crack extension, and approaches a “steady-state”. The second regime occurs if the fibers fail when the stress on them reaches a unique fiber strength. The fiber breakage reduces the shielding contribution, resulting in a significant acceleration in the crack growth rate. It is suggested that a criterion based on the onset of fiber failure may be used for a conservative lifetime prediction. The results of the calculations have been summarized in calibrated functions which represent the crack tip stress intensity factor and the applied load for fiber failure.  相似文献   

11.
When a composite material is subjected to a homogeneous or inhomogeneous stress field, different phases undergo different temperature fluctuations due to the well-known thermoelastic effect. As a result, irreversible heat conduction occurs and entropy is produced. This entropy production is the genesis of elastothermodynamic damping. Recently, taking the second law of thermodynamics as a starting point, a general methodology for calculating the elasto-thermodynamic damping was presented by Kinra and Milligan. Using this method, we calculate the elastothermodynamic damping for two canonical problems concerning particle-reinforced metal-matrix composites: (1) a single spherical inclusion in an unbounded matrix and (2) anN layer finite concentric composite sphere. In both cases, a uniform radial time-harmonic loading is considered. This article is based on a presentation given in the Mechanics and Mechanisms of Material Damping Symposium, October 1993, in Pittsburgh, Pennsylvania, under the auspices of the SMD Physical Metallurgy Committee.  相似文献   

12.
Nucleation on ceramic particles in cast metal-matrix composites   总被引:6,自引:0,他引:6  
In order to understand the nucleation on ceramic particles in the melts of metal-matrix composites (MMCs), the effect of segregation of solute on the surface of reinforcement particles in the melt has been analyzed as a function of particle temperature and the surface energy of the particle/liquid melt. The temperature of the particle in the melt, calculated analytically, was found to become close to the melt temperature within a very short time of contact between the particle and the melt. The solute concentration near the particle surface will, therefore, primarily be influenced by the surface energy of the particle and the melt. Based on this, the undercooling due to solute segregation around the particle and the chemical free-energy change due to the formation of the new solid phase on the particle were calculated in selected hypo- and hypereutectic Al-Si alloy melts containing (1) SiC particles or (2) graphite particles. The chemical free-energy change (driving force for nucleation) due to the formation of the new phase on the particle is lower for hypoeutectic compositions than for hypereutectic compositions in the aluminum-silicon alloy systems; this is due to the higher undercooling in the hypereutectic alloys due to solute segregation on the surface of the particle. This suggests that the formation of the primary phase on the surfaces of particles in the melt should be more favorable in the hypereutectic compositions than for hypoeutectic compositions. This also indicates that even when the particle temperature is not significantly lower than the liquidus temperature, nucleation on the particles can take place due to the segregation of the solute on the particles. Experimental observations of the microstructure of several cast metal-matrix composites, including Al-Si-SiC and Al-Si-graphite, show (1) the presence of silicon in contact with the reinforcement particles in hypereutectic alloys, suggesting that nucleation and growth of primary silicon under certain conditions occurs on silicon carbide and graphite particles, possibly due to solute segregation on the surface of the particles, and (2) the presence of reinforcement particles in the last-freezing interdendritic regions of the primary phases in hypoeutectic alloys, suggesting the absence of nucleation of primary phases on the reinforcement surface, as predicted by the analysis.  相似文献   

13.
The objective of this work is to obtain deeper insight into the damage evolution occurring during creep in short-fiber-reinforced metal-matrix composites. Uniaxial tensile creep experiments were performed on a model composite with a lead (Pb) matrix. This system was chosen because it allowed the performance of all creep tests at room temperature, thus facilitating the detection of fiber fragmentation by acoustic emission measurements. By this experimental approach, for the first time, quantitative information about the spatial and temporal evolution of microfractures in creeping metal-matrix composite of this kind was obtained. The acoustic emission results show that fiber fragmentation sets in early in the creep life and continues to operate up to macroscopic failure, thus affecting the creep behavior in all stages including the steady-state regime. During the whole creep process, the fracture sites are homogeneously distributed in the specimen volume. These findings largely support the micromechanical damage model proposed by Dlouhy and co-workers, in which the creep process in short-fiber-reinforced metal-matrix composites is described as an interplay of work hardening and recovery in the matrix as well as fragmentation of the fibers.  相似文献   

14.
Recently, a simple new test method called the plane strain stretching (PSS) test has been developed to evaluate the stamping formability of sheet materials. The PSS test has been proven to have good reproducibility and show good correlation with press performance. In order to clarify the deformation characteristics of the PSS test and investigate the effect of material and process variables on the performance of the PSS test, three-dimensional finite element simulations for the PSS test were performed and the results compared with experiments.  相似文献   

15.
A novel electrical resistance probe technique to measure thein situ volume fraction of ceramic particles in molten metals was applied to the measurement of sedimentation rates of 90-μm-diameter silicon carbide particles in molten aluminum. The results indicate that the rate strongly depends on volume fraction; the time to clarify a 0.15-m depth increased from approximately 60 to 500 seconds as the particle volume fraction increased from 0.05 to 0.30. Maps showing the changes in volume fraction throughout the melt were generated. A multiphase hydrodynamic model was developed to describe the sedimentation. Using volume fraction-dependent drag coefficients from work in aqueous systems, the model was able to simulate the experimental results remarkably well. The experimental and modeling results indicate that there was little agglomeration or network formation during sedimentation. The implications of the results for solidification and particle pushing are discussed. Formerly Graduate Student, McMaster University  相似文献   

16.
Finite element analyses of the effect of particle fracture on the tensile response of particle-reinforced metal-matrix composites are carried out. The analyses are based on two-dimensional plane strain and axisymmetric unit cell models. The reinforcement is characterized as an isotropic elastic solid and the ductile matrix as an isotropically hardening viscoplastic solid. The reinforcement and matrix properties are taken to be those of an Al-3.5 wt pet Cu alloy reinforced with SiC particles. An initial crack, perpendicular to the tensile axis, is assumed to be present in the particles. Both stationary and quasi-statically growing cracks are analyzed. Resistance to crack growth in its initial plane and along the particle-matrix interface is modeled using a cohesive surface constitutive relation that allows for decohesion. Variations of crack size, shape, spatial distribution, and volume fraction of the particles and of the material and cohesive properties are explored. Conditions governing the onset of cracking within the particle, the evolution of field quantities as the crack advances within the particle to the particle-matrix interface, and the dependence of overall tensile stress-strain response during continued crack advance are analyzed. Formerly Graduate Research Assistants, Brown University  相似文献   

17.
In metal-matrix composites (MMCs), the metal matrix is exposed to plastic deformation and damage accumulation in the region close to the reinforcements, following mechanical or thermal stress. In this connection, Al-4 wt pct Cu-based MMCs reinforced with 20 vol pct Al2O3 fibers were characterized by internal friction (IF) measurements. The IF measurements as a function of the vibration amplitude present a solid friction peak connected with the loosening of metal-fiber interfaces, while plastic deformation was associated with a high amplitude IF background. On this basis, IF measurements allowed us to identify the distribution of internal stresses and damage accumulation at matrix-fiber interfaces or plastic flow in the matrix in different thermomechanical conditions. Furthermore, IF measurements allowed damage accumulation consequent to mechanical fatigue to be followed.  相似文献   

18.
19.
20.
A numerical technique for simulating the plastic response of whisker-reinforced metal-matrix composites under conditions of changing temperature and applied stress is developed. The model simulates an elastic-plastic (diffusion-controlled power-law creep) matrix and elastic whiskers, with variable whisker length and spacing. To test this model, the mechanical behavior of a metal-matrix composite of 6061 aluminum, reinforced with 20 vol pct discontinuous, oriented silicon carbide whiskers was studied under conditions of repeated temperature cycling and isothermal creep. The results of the thermal-cycling experiments are compared to those of the model. Both the experiments and the model demonstrate that the composite flw stress may be significantly reduced by thermal cycling (relative to isothermal, elevated temperature behavior) and that under appropriate conditions, the composite strain rate is proportional to the applied stress. Also, agreement between the experimental results and the first-principles model is very good in terms of both magnitude and trends, despite simplifications in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号