首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminescence intensity of emission peak at around 525 nm decreased in the Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphors. Mg2+ ion, which was likely incorporated into the Sc3+ position of the host crystal, was co-doped to adjust the crystal field and compensate for the excess positive charge due to the doping of Ce3+. The green emission belonged to the 5d→4f transition of Ce3+ moved toward longer wavelength by addition of Mg2+ in Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphor, which could increase the brightness of the phosphor. However, the position of weakening of luminescence intensity at around 525 nm remained basically unchanged by increasing the amount of Mg2+. The results showed that the weakening of luminescence intensity at around 525 nm caused by the absorption of Er3+, which had little influence on the environment of the crystal field.  相似文献   

2.
The preparation of NaCaPO4 doped with rare earth (RE) ions Ce3+, Eu3+ and Dy3+ by combustion method was described. Under UV excitation (251 nm) of NaCaPO4:Ce3+ showsd emission (367 nm) in UV range. When NaCaPO4:Dy3+ phosphor was excited at 349 nm, the emission spectrum showed intense bands at 482 nm (blue) and 576 nm (yellow). In Eu activated NaCaPO4 phosphor, the emission spectrum showed a dominant peak at 594 nm (orange) while others were at 614 and 621 nm (red) when excited at 393 nm. The prepared phosph...  相似文献   

3.
利用水热法制备了性能稳定的红色荧光粉LaPO4:Eu3+,同时研究了不同的Eu3+浓度、煅烧温度对荧光粉发光性能的影响.通过X射线粉末衍射(XRD)和扫描电子显微镜(SEM)来表征荧光粉的晶体结构和颗粒大小及形貌;用激发光谱和发射光谱以及荧光衰减曲线来表征荧光粉的荧光性能.结果表明:未煅烧时前躯体主要是六方晶相LaPO4·0.5H2O,煅烧温度在900℃时,所制备样品为单斜相LaPO4:Eu3+;SEM图像显示5 at.%Eu3+掺杂LaPO4呈椭球形,颗粒长约为500 nm,宽约为300 nm.最大发射波长和激发波长分别为592 nm和393 nm,发射光谱中592 nm和612 nm的发射峰对应的是Eu3+离子的5D0→7F1和5D0→7F2跃迁.其荧光寿命为3.32 ms.  相似文献   

4.
采用水热法制备具有单一相六方晶系的LaF3:Eu3+纳米荧光粉.通过X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、光致发光光谱(PL)和荧光衰减曲线对LaF3:Eu3+纳米荧光粉进行表征.LaF3:Eu3+荧光粉的激发光谱主要由250 nm处的宽带(O2-→Eu3+的电荷转移跃迁)和一些尖峰(Eu3+ f-f跃迁)构成,其中位于近紫外区396 nm处有一较强的激发峰.通过发射光谱探测Eu3+在LaF3晶体中的局部晶场环境.在298 K下激发光谱和发射光谱可知,在六方晶系的LaF3纳米晶体中的Eu3+晶格位置从D4h降至到C2v,这是由于晶格变化所造成的.在396 nm激发下,观测到较优掺杂浓度为10%的LaF3:Eu3+荧光粉在591 nm(5D0→7F1跃迁)处有强烈的红色发射峰.其发光性能表明,LaF3:Eu3+红色荧光粉在近紫外发光二极管领域具有潜在的应用价值.   相似文献   

5.
The Ba3Y2(BO3)4:Eu^3+ phosphor was synthesized using a high temperature solid-state reaction method and the luminescent characteristics were investigated. The emission spectrum exhibited one strong red emission at 613 nm, corresponding to the electric dipole 5D0-TF2 transition of Eu^3+, under 365 nm excitation. The excitation spectrum of 613 nm indicated that the Ba3Y2(BO3)n:Eu^3+ phosphor was effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the 613 nm emission of the Ba3Y2(BO3)n:Eu^3+ phosphor was measured. The results showed that the emission intensity increased with increasing Eu^3+ concentration, and then decreased. The CIE color coordinates of Ba3Y2(BO3)4:Eu^3+ phosphor were x=0.641 and y=0.359 at 15 mol.% Eu^3+.  相似文献   

6.
A series of NaBa1-x-yPO4: xCe3+, yTb3+ phosphors were synthesized by solid-state reaction method. The crystal structure, photoluminescence emission and excitation spectra and decay times of the phosphors were carefully investigated. The results revealed that an efficient energy transfer occurred from Ce3+ to Tb3+ ions in NaBaPO4 host by means of dipole-dipole interactions and the critical distance of the energy transfer was about 0.638 nm. Moreover, the phosphor emitted strong green emission under UV excitation, indicating that the phosphors are potentially useful as a highly efficient, green-emitting phosphor.  相似文献   

7.
A new aluminate host material Ca3ZnAl4O10 doped with Eu2+ was prepared by a high-temperature solid-state reaction method, and a pure crystalline phase of Ca3ZnAl4O10 was confirmed with X-ray powder diffraction (XRD) measurement. The luminescent property was investigated with excitation and emission spectra. The phosphor could be excited by UV light from 220 nm to 400 nm and emitted a blue luminescence peaked at 450 nm, which corresponded to the 4f65d1→4f7 transition of Eu2+ ions. The dependence of luminesce...  相似文献   

8.
利用水热法制备立方相Y2O3:Eu红色荧光粉.在不同掺杂浓度、不同溶液pH值的系列样品中,均观测到Eu3+离子的特征发射.荧光强度与Eu3+离子掺杂浓度关系研究表明:在不同掺杂浓度中,Eu3+离子掺杂浓度为9 %时其相对发射强度最强.在不同溶液pH值所获得的样品中,以溶液pH等于6制备的样品发光效果最好.此外通过与商用Y2O3:Eu红色荧光粉比较,发现其荧光强度相当.因此,与传统高温固相法相比,水热法合成Y2O3:Eu红色荧光粉是简单易行方案.   相似文献   

9.
红色荧光粉NaBaPO_4:Eu~(3+)的制备及其性能研究   总被引:1,自引:0,他引:1  
采用高温固相法制备单一六方晶系红色荧光粉NaBaPO4:Eu3+。利用XRD、SEM和荧光光谱等对NaBaPO4:Eu3+粉末的理化特性进行表征,考察了激活剂Eu3+的浓度和助熔剂NH4F用量对粉末的晶体结构和发光性能的影响。结果表明:激活剂Eu3+最大掺入量为20%,助熔剂NH4F的最大掺入量为10%,采用该配比合成得到的荧光粉NaBa0.8PO4具有最好的发光性能。在最强激发波长的近紫外光(≈393nm)激发下,样品发射强的红光(≈613nm)和橙光(≈591nm)。  相似文献   

10.
Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.  相似文献   

11.
Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system with space group I41/α. The effects of flux content and sintering temperature on the luminescent properties were investigated with the emission and excitation spectra. The results showed that flux content and sintering temperature had effects on the luminescent properties, the optimized flux content and the best temperature was 3 % and 800 ℃ respectively. The excitation and emission spectra also showed that this phosphor could be effectively excited by C-T band (280 nm), ultraviolet light 395 nm and blue light 465 nm. The wavelengths at 395 and 465 nm were nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Integrated emission intensity of Gd2Mo3O9 : Eu was twice higher than that of Y2O2S : Eu^3 + under 395 nm excitation. The Eu^3+ doped Gd2Mo309 phosphor may be a better candidate in solid-state lighting applications.  相似文献   

12.
Ce^3+-activated SrGa2O4 phosphor was synthesized by a method of citric gel,wherein citric acid served as a chelate agent,and the as-synthesized powder was calcined in a slightly reduced ambient.The crystallization characteristics of the sample varied with the calcining temperature.Compared with the phosphor prepared by the solid-state reaction,the phosphor synthesized by citric gel was calcined at a relatively lower temperature.Consequently,the volatilization of Ga2O3 during high-temperature calcining process was avoided.The typical double-peak emission of Ce^3+ originated from 2D(5d)→4F5/2(4f),and 2D(5d)→4F7/2(4f)was observed,and the intrinsic emission of SrGa2O4 host was much restricted.The emission intensity varied with the calcining temperature because the different crystallinity and the optimal concentration of Ce-dopant was determined at 3%.  相似文献   

13.
A series of Eu2+-doped ternary nitride phosphors, with a formula of (Sr1-xCax)2Si5N8: Eu2+, were synthesized by high-temperature solid-state method. The structure and luminescence properties were characterized, indicating the potential application as a red phosphor in the phosphor-converted white light-emitting diodes. The X-ray diffraction patterns showed that the Sr2Si5N8 and Ca2Si5N8 phases were generated at each end of (Sr1-xCax)2Si5N8: Eu2+ and coexisted in the range of 0.5≤x≤0.75. The emission spectra showed broad emission bands originating from the 4f65d1→4f7 transition of Eu2+ ions. The emission peak changed with the variations in Ca2+ concentration.  相似文献   

14.
Ce3+/Eu2+ co-doped LiBaBO3 phosphor was synthesized by high temperature solid-state reaction method, and its luminescent character- istics were investigated. The hues of the LiBaBO3:Ce3+, Eu2+ phosphor varies from blue to white and eventually to yellow-green by properly tuning the Ce3+/Eu2+ ratio. Under UV excitation, white light was generated by coupling blue and yellow-green emission bands attributed to Ce3+ and Eu2+ emissions, respectively. The luminous efficacy of LiBaBO3:1%Ce3+, 2%Eu2+ calculated from ...  相似文献   

15.
Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a hexagonal crystal structure, which was the same as Y2O2S. The emission spectrum and excitation spectrum were measured, and the effect of Sm^3 + molar ratio on the spectra was discussed. The emission spectra of the phosphors showed three emission peaks due to typical transitions of Sm^3 + (4G5/2→6HJ ,J = 5/2, 7/2, 9/2), and the emission peaks at 606 nm was stronger than others. With the increase of Sm^3 + molar ratio, the emission intensity was strengthened. The excitation peaks were ascribed to the representative energy transition 4f→4f of Ti^4+ phosphor prepared by co-precipitation method was Sm^3+ ions. The results indicated that the Y2O2S : Sm^3+ , Mg^2+ , an efficient long afterglow phosphor.  相似文献   

16.
YAG:Ce3+ phosphor was prepared by a novel co-precipitation-rheological phase method.The resulting YAG:Ce3+ phosphor was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and photoluminescent emission spectra.By using acetic acid as solvent,YAG:Ce3+ powder with small particle size(≤2 μm) was obtained at a relatively lower sintering temperature of 1400 oC.With the content of acetic acid increasing,small particles dissolved and disappeared,but larger particles grew up and changed its shape from spherical to partially rectangular.Meanwhile,the emission intensity of the sample prepared by co-precipitation-rheological phase method was about 43% higher than that of the sample prepared by co-precipitation method.It was assumed that the significant improvement of luminescence was mainly because the rheological phase presented a better diffusion environment,and therefore,a better homogeneity of activators of Ce3+.  相似文献   

17.
Ce3+ and Tb3+ co-doped SrSi2N2O2 phosphors were prepared by solid-state reaction. The X-ray diffraction pattern exhibited that the phosphor consisted mainly of oxygen-rich SrSi2N2O2. The optical properties of SrSi2N2O2:Ce3+, SrSi2N2O2:Tb3+ and SrSi2N2O2:Ce3+,Tb3+ were studied, respectively. The emission intensity of Tb3+ at 541 nm was remarkably enhanced by Ce3+ in SrSi2N2O2:Ce3+,Tb3+ phosphor, which was attributed to the energy transfer from Ce3+ to Tb3+. The chromaticity coordinates of phosphors were investigated as a function of Tb3+ concentration. When the Ce3+ and Tb3+ concentrations were 0.02 and 0.18 mol per formula unit, respectively, the chromaticity coordinate was (0.257, 0.337) in the CIE 1931 chromaticity diagram. SrSi2N2O2Ce3+,Tb3+ phosphors could be used for white light emitting diodes.  相似文献   

18.
用BPO4和稀土氧化物为原料,采用固相反应法合成了掺杂Eu^3 离子的YPO4,并用X射线粉末衍射对其结构进行了表征,X射线粉末衍射实验结果表明,YPO4属四方晶系,晶胞参数α=0.6894nm,c=0.6020nm,属I41/αmd(No.141)空间群,测定了其激发光谱和发射光谱,探讨了掺杂Eu^3 离子的YPO4的发光特性。  相似文献   

19.
We described the synthesis and luminescence of Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phosphor for light emitting diode (LED). The crystal-linity, morphology, structure, and luminescence spectra were examined by X-ray diffraction, field emission-scanning electron microscopy and photoluminescence spectroscopy. The results showed that Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phase was a dominating phase with little impurity phase peaks of Y2O3 when the sintered temperature reached to 1400 oC. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was about 3 μm. Meanwhile, the excitation and emission spectra indicated that the as-prepared phosphors could be effectively excited by blue (460 nm) light and the excitation spectrum showed a broad band extending from 400-500 nm, while emission spectrum showed a broad yellow band peaking at 534 nm. The decay curve at the emission peak consisted of fast and slow components. The Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ should be a promising yellow phosphor for near blue-based white-light-emitting diodes (LEDs).  相似文献   

20.
A series of CeB6-doped and CeO_2-doped Ca_(1-x)SiAlN_3:xCe3+(denoted as CASN:Ce3+@CeB6 and CASN:Ce3+@CeO_2, respectively) were synthesized by alloy-nitridation method under high-purity nitrogen atmosphere. The morphologies, crystal phases, and luminescence properties were investigated in detail.With an increase in the concentration of CeB_6, the unit cell volume of CASN:Ce3+@CeB_6 slightly increases due to the substitution between ions, which leads to a change of micro structure around Ce3+. CASN:Ce3+@CeB6 efficiently emits yellow-orange light with a maximum emission intensity at around 550 nm for the content x of 0.01(being in comparable situation, CASN:Ce3+@CeO_2 is x = 0.04) when excited at460 nm. Compared with CASN:Ce3+@CeO_2, the red emission component of Ce3+ in CASN:Ce3+@CeB6 is much stronger. This is ascribed to energy transfer of intra-Ce3+(within one Ce3+ ion) and inter-Ce3+(between Ce3+ and Ce3+ ions). In addition, the replacements of N3-(0.132 nm for CN = 4) and O~(2-)(0.124 nm for CN = 4) by B~(2-)(0.140 nm for CN = 4), which can lead to a marked expansion of the host lattice and a decrease of the oxidation of samples, are also responsible for the increase of red emission component. Furthermore, CASN:Ce3+@CeB_6 phosphor has an excellent thermal stability because of the partial substitution of Ce-O(Ce-N) bonds by more covalent Ce-B. As a result, the outstanding luminescent properties of CASN:Ce3+@CeB6 phosphor make it practical to use in the single phosphor-coated high-color-rendering power white LED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号