共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
CRSNET人工神经元网络程序是冷连轧机轧制规程优化设定软件包CROSSv2.0的子程序,功能是通过采集生产现场实测数据,运用人工智能方法,对轧制规程设定中的力能参数及板凸度进行预报,并用预报结果对CROSS软件所用的理论计算模型及优化设定结果进行了修正,提高软件设定结果的精确性及软件的通用性,进一步提高软件的设定速度。 相似文献
8.
神经元网络技术在连铸漏钢预报中的应用 总被引:5,自引:0,他引:5
介绍在连铸神经元网络漏钢预报系统中开发应用的人工神经元网络技术。对人工神经元网络的结构选型和训练进行了说明。现场运行结果表明:该系统对于不同的生产条件和工艺参数均具有良好的性能。 相似文献
9.
为在寻优过程中有效地保持算法的种群多样性,提出了一种改进的PSO(Particle Swarm Optimization) 算法--PSOPC(Particle Swarm Optimizer based on Predator-prey Coevolution).PSOPC算法将生态系统中捕食者和猎物的竞争协同进化机制嵌入到PSO算法中.基于PSOPC进行RFID(Radio Frequency IDentification)读写器网络调度模型的求解,根据读写器冲突关系的变化在线进行读写器的时隙分配求解与控制,在不影响读写器工作效率的同时,有效消除密集读写器环境下的读写器冲突问题,并优化整个读写器网络的工作效率. 相似文献
10.
为了进一步提高热连轧精轧机组轧制力的设定精度,采用小波神经网络建立轧制力预报模型。并采用改进的快速BP算法来训练网络。仿真结果表明:建立的轧制力预报模型的预报值与实际值之间的相对误差在±6%以内,且学习算法收敛速度快。 相似文献
11.
12.
Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimization algorithm-particle swarm optimization (PSO) is adopted. The algorithm is combined with the BP rapid training algorithm, and then, a kind of new neural network (NN) called PSO-BP NN is established. With the advantages of global optimization ability and the rapid constringency of the BP rapid training algorithm, the new algorithm fully shows the ability of nonlinear approach of multilayer feedforward network, improves the performance of NN, and provides a favorable basis for further online application of a comprehensive model. 相似文献
13.
14.
采用了一种基于贝叶斯方法的前向神经网络训练算法以提高网络的泛化能力,并在网络的目标函数中引入了表示网络结构复杂性的惩罚项,避免了网络的过拟合。采用Levenberg Marquardt算法训练网络,并使用Gauss Newton的数值方法来近似求解Hessian矩阵,以减少计算量,从而提高了网络的收敛速度。将上述网络应用于冷轧过程的轧制力预报中,预报结果的精度远远高于解析模型,与基于传统BP神经网络的冷轧轧制力预报模型相比,在收敛的速度和预报的精度上均优于后者。 相似文献
15.
16.
鉴于岩爆机理的复杂性以及岩爆发生前后信号提取困难的现状,对高应力区进行岩爆倾向性预测研究具有现实意义。为提高岩爆预测的准确性,基于岩爆预测多维非线性的特点,选取4个影响岩爆发生的核心指标作为判决依据,结合粒子群优化算法(PSO)与径向基神经网络(RBF)建立了PSO-RBF神经网络岩爆预测模型。采用试错法确定隐含层节点数后,进一步利用国内外典型工程数据对模型参数隐含层基函数中心ci,隐含层节点宽度σi以及隐含层与输出层间权重因子w进行学习优化以获取最优参数,并将所建立的模型应用于实际工程的岩爆倾向性预测。结果表明:利用该模型预测的岩爆等级与实际岩爆情况基本相符,相对误差率为10%,精度较以往预测方法有显著提高。 相似文献
17.
为了研究溶浸开采过程中浸出率的预测问题,以含锑硫化矿的浸出过程为例,采用经粒子群算法优化的BP神经网络模型预测浸出率。首先分析得出影响矿物浸出率的主要因素,并将已有样本数据进行变量训练,建立BP神经网络预测模型;其次利用粒子群算法优化该模型;最后分别利用BP神经网络模型和PSO-BP神经网络模型预测浸出率,并对比2种模型预测值与实际值的误差精度。研究结果表明:影响含锑硫化矿浸出率的主要因素有温度、时间、液固比、搅拌速度和HCl浓度,且这些因素相互影响,其与浸出率呈现高度非线性关系,采用粒子群算法优化的BP神经网络模型训练精度较高,对浸出率的预测更精确,相比BP神经网络,该模型得出的预测结果与实际值的相对误差以及方差都有明显下降。由此可见,该预测模型对当前矿区溶浸开采的浸出率优化有一定的参考价值。 相似文献