首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous latexes were prepared by a semicontinuous seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amounts of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. Phase separation towards the thermodynamic equilibrium morphology was accelerated either by ageing the composite latex at 80 °C or by adding a chain‐transfer agent during polymerization. The morphologies of the latex particles were examined by transmission electron microscopy (TEM). The morphology distributions of latex particles were described by a statistical method. It was found that the latex particles displayed different equilibrium morphologies depending on the composition of the second‐stage copolymers. This series of equilibrium morphologies of [poly(butyl acrylate)/poly(styrene‐co‐methyl methacrylate)] (PBA/P(St‐co‐MMA)) system provides experimental verification for quantitative simulation. Under limiting conditions, the equilibrium morphologies of PBA/P(St‐co‐MMA) were predicted according to the minimum surface free energy change principle. The particle morphology observed by TEM was in good agreement with the predictions of the thermodynamic model. Therefore, the morphology theory for homopolymer/homopolymer composite systems was extended to homopolymer/copolymer systems. © 2002 Society of Chemical Industry  相似文献   

2.
Different poly(methyl methacrylate/n‐butyl acrylate)/poly(n‐butyl acrylate/methyl methacrylate) [P(BA/MMA)/P(MMA/BA)] and poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(BA/MMA)/PSt] core‐shell structured latexes were prepared by emulsifier‐free emulsion polymerization in the presence of hydrophilic monomer 3‐allyloxy‐2‐hydroxyl‐propanesulfonic salt (AHPS). The particle morphologies of the final latexes and dynamic mechanical properties of the copolymers from final latexes were investigated in detail. With the addition of AHPS, a latex of stable and high‐solid content (60 wt %) was prepared. The diameters of the latex particles are ~0.26 μm for the P(BA/MMA)/P(MMA/BA) system and 0.22–0.24 μm for the P(BA/MMA)/PSt system. All copolymers from the final latexes are two‐phase structure polymers, shown as two glass transition temperatures (Tgs) on dynamic mechanical analysis spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3078–3084, 2002  相似文献   

3.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

4.
Graft copolymers with poly(n-butyl acrylate) (PBA) backbones and poly(methyl methacrylate) (PMMA) macromonomer side chains are used as compatibilizing agents for PBA/PMMA composite latexes. The composite latexes are prepared by seeded emulsion polymerization of methyl methacrylate (MMA) in the presence of PBA particles. Graft copolymers were already incorporated into the PBA particles prior to using these particles as seed via miniemulsion (co)polymerization of n-butyl acrylate (BA) in the presence of the macromonomers. Comparison between size averages of composite and seed particles indicates no secondary nucleation of MMA during seeded emulsion polymerization. Transmission electron microscopy (TEM) observations of composite particles show the dependence of particle morphologies with the amount of macromonomer (i.e., mole ratio of macromonomer to BA and molecular weight of macromonomer) in seed latex. The more uniform coverage with the higher amount of macromonomer suggests that graft copolymers decrease the interfacial tension between core and shell layers in the composite particles. Dynamic mechanical analysis of composite latex films indicates the existence of an interphase region between PBA and PMMA. The dynamic mechanical properties of these films are related to the morphology of the composite particles, the arrangement of phases in the films, and the volume of the interphase polymer. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
The radical-induced grafting of n-butyl acrylate (BA) onto poly(butadiene-co-styrene) [(P(Bd-S)] latexes during seeded emulsion polymerization was studied. This P(Bd-S)/PBA rubber/rubber core/shell latex system exhibited unique grafting behavior as compared to other extensively studied rubber/glass core/shell latex systems, such as poly(butadiene-co-styrene)/poly(methyl methacrylate) [P(Bd-S)/PMMA], poly(butadiene-co-styrene)/polystyrene [P(Bd-S)/PS] and poly(butadiene-co-styrene)/poly(acrylonitrile)[P(Bd-S)/PAN]. These composite latexes were characterized by the formation of a highly grafted/crosslinked P(Bd-S)/PBA interphase zone generated during the seeded emulsion polymerization process. Although both of the individual core and shell polymers studied were “soft” themselves, the resulting P(Bd-S)/PBA composite latex particles were found to be rather “hard.” The formation of the interphase zone was studied by using techniques such as solvent extraction, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:511–523, 1997  相似文献   

6.
Poly (vinyl acetate) (PVAc) latexes are economically important products with many desirable features. They are used as adhesives for porous materials in various processing stages of industries. Synthesis parameters have an important role on the physico-chemical properties of PVAc latexes such as: viscosity, average molecular weight, degree of polymerization, and surface morphology. In this work, PVAc was prepared via semicontinous emulsion polymerization (delayed monomer and initiator addition process) in the presence of ammonium persulfate (APS) as conventional anionic initiator, poly (vinyl alcohol) (PVA) as stabilizer, and sodium lauryl sulfate (SLS) as anionic emulsifier. The surface morphology of PVAc microspheres was, examined using a scanning electron microscope (SEM) and atomic force microscope (AFM). It is evident from the SEM photographs that all the particles became microspheres and are uniform in shape. The use of AFM for imaging of polyvinyl acetate confirms a typical sphere polymer. The effect of changes in the different parameters such as concentration of emulsifier, initiator concentration, and presence or absence of buffer on the vinyl acetate (VAc) conversion, the steady state polymerization rate, the viscosity-average molecular weight, and the final latex viscosity of synthesized PVAc were investigated. The effects of anionic emulsifier on the synthesized PVAc are also compared with those obtained by the nonionic emulsifier. The comparison indicated that the VAc monomer conversion and the final latex viscosity of the anionic system were higher than for the nonionic system but the viscosity-average polymer molecular weight of the anionic system was lower than that of the nonionic system. The adhesive strength of the synthesized PVAc latex was examined and the load and deflection data were reported.  相似文献   

7.
采用种子乳液聚合法制备了聚丙烯酸丁酯(PBA)乳液,然后通过第二单体甲基丙烯酸甲酯的预溶胀法聚合制备了PBA/聚甲基丙烯酸甲酯(PMMA)乳液,用激光散射粒度仪和透射电子显微镜对乳液粒径和结构进行了表征.结果表明,当乳化剂十二烷基硫酸钠质量分数为丙烯酸丁酯的1.5%时,可制备粒径为53.6 nm且分布窄的PBA种子乳液;通过调整补加乳化剂、单体与种子乳液的用量,可制得粒径为53.6~443.8 nm的一系列单分散PBA乳液;PBA/PMMA乳液具有完善的核壳结构,且在核壳两相间存在着一个过渡层.  相似文献   

8.
由种子乳液聚合法制备了聚苯乙烯-聚甲基丙烯酸甲酯核-壳粒子。以过硫酸钾(KPS)为引发剂,辛基酚聚氧乙烯醚(OP-10)为乳化剂,合成了聚苯乙烯(PS)种子核;连续滴加甲基丙烯酸甲酯(MMA),在核表面富集MMA,制备了粒径范围在0.16~0.67μm的核-壳粒子;当单体苯乙烯与甲基丙烯酸甲酯(St/MMA)的比为30∶70(质量比)时,所得粒径在0.18μm,粒径分布为0.012。差示扫描量热(DSC)研究显示,复合粒子的玻璃化转变温度(Tg)为97.2℃,峰形单一,表现出良好的热性能。  相似文献   

9.
Heterogeneous latexes were prepared by a two‐stage seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amount of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. It was found that the latex particles displayed different morphologies depending on the monomer ratio. The amount of MMA had a significant effect on the evolution of morphology. The morphologies were observed by transmission electron microscopy. In addition, the evolution of the particle morphology was predicted by the mathmatical model for cluster migration. The model gave the same trends as the experimental results. © 2002 Society of Chemical Industry  相似文献   

10.
The core-shell grafting copolymer of α-methyl styrene-methyl acrylate on poly(butyl acrylate) was synthesized. The particle morphology of latex and core-shell grafting polymerization was investigated as a function of: (a) reaction temperature; (b) initiator concentration used in the secondary polymerization; (c) monomer to polymer ratio; (d) emulsifier concentration. The compatibility of this copolymer with poly(vinyl chloride) (PVC) was determined by the method of solubility parameter and scanning electron microscopy. The rheological behavior of the blend of this copolymer with PVC was investigated. The mechanical properties of the blend were determined. The results show that this copolymer can be used as processing aid for PVC. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
In the absence of emulsifier, we prepared stable emulsifier‐free polymethylmethacrylate/polystyrene (PMMA/PSt) copolymer latex by batch method with comonomer N,N‐dimethyl, N‐butyl, N‐methacryloloxylethyl ammonium bromide (DBMEA) by using A1BN as initiator. The size distribution of the latex particles was very narrow and the copolymer particles were spherical and very uniform. Under the same recipe and polymerization conditions, PMMA/PSt and PSt/PMMA composite polymer particle latices were prepared by a semicontinuous emulsifier‐free seeded emulsion polymerization method. The sizes and size distributions of composite latex particles were determined both by quasi‐elastic light scattering and transmission electron microscopy (TEM). The effects of feeding manner and staining agents on the morphologies of the composite particles were studied. The results were as follows: the latex particles were dyed with pH 2.0 phosphotungestic acid solution and with uranyl acetate solution, respectively, revealing that the morphologies of the composite latex particles were obviously core–shell structures. The core–shell polymer structure of PMMA/PSt was also studied by 1H, 13C, 2D NMR, and distortionless enhancement by polarization transfer, or DEPT, spectroscopy. Results showed that PMMA/PSt polymers are composed of PSt homopolymer, PMMA homopolymer, and PMMA‐g‐PSt graft copolymers; results by NMR are consistent with TEM results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1681–1687, 2005  相似文献   

12.
The synthesis of structured latex particles involved the preparation of a slightly crosslinked poly(n-butyl acrylate) (PBA) seed and a poly(benzyl methacrylate-styrene) [P(BM-St)] shell. It was found that structured core-shell latex particles prepared by semicontinuous monomer addition yielded better coverage of the seed particles than those polymerized by batch and that poly(benzyl methacrylate) yielded better coverage than polystyrene (PS). Polymerizations in the presence and absence of a chain transfer agent indicated that the presence of isooctyl mercaptopropionate (IOMP) causes the second-stage monomer to polymerize as an isolated, single patch of shell material. In the absence of IOMP, smaller patches of shell material are spread throughout the PBA seed surface. The different morphologies obtained under different polymerization conditions were attributed to thermodynamic and kinetic factors such as polymer-polymer interfacial tensions and viscosity effects. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
St-BA-BVP无皂共聚物阳离子乳胶粒大小及形态研究   总被引:1,自引:0,他引:1  
合成阳离子共单体 1-丁基 ,4 -乙烯吡啶溴化铵 ( BVP) ,并以偶氮二异丁基咪盐酸 ( A IBA)作引发剂 ,制备苯乙烯 /丙烯酸丁酯 ( St/ BA )共聚物乳液 ,通过 TEM研究改变 BVP的浓度、St/ BA主单体的配比及单体加料方式对 P( St/ BA / BV P)乳胶粒大小形态的影响 ,结果表明批量法和单体全滴加法制备的乳胶粒形状规则、分布均匀、半连续法制备的乳胶粒子呈多分散分布 ,粒径相差很大 ,且 P( St) / P( BA)得到的乳胶粒呈明显的核壳结构。  相似文献   

14.
Heterogeneous latexes were prepared by a two-stage seeded emulsion polymerization process at 80°C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(styrene-co-methacrylic acid) latexes containing varying amounts of methacrylic acid (MAA) were used as seeds. The second-stage polymer was poly(isoprene-co-styrene-co-methacrylic acid). By using different methods for the addition of the MAA and by varying the amount of MAA, the hydrophilicity of the polymer phases could be controlled. The morphologies and size distributions of the latex particles were examined by transmission electron microscopy. The latexes were in all cases unimodal, and had narrow particle size distributions. The particles displayed different morphologies depending on the polymerization conditions and monomer composition. The hydrophilic properties of the two phases in combination with the internal particle viscosity and crosslinking of the second phase during polymerization were found to be the major factors influencing the particle morphology. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1543–1555, 1997  相似文献   

15.
核壳型醋丙乳液胶黏剂的制备及其性能研究   总被引:1,自引:0,他引:1  
朱勇  王平华  张奎  张健堂 《化学与粘合》2010,32(1):54-56,78
乳胶粒子形态控制是聚合物乳液研究的重要领域,几十年中在聚合物材料、涂料、胶黏剂等诸多领域的成功的应用使得核壳结构聚合物复合粒子备受关注。采用种子乳液聚合法,采用复配乳化剂体系合成了以醋酸乙烯酯为核,醋酸乙烯酯和丙烯酸丁酯为壳的乳液,并重点研究了单体滴加速率、SDS与OP-10质量比、引发剂用量对乳液性能的影响,通过透射电镜和红外光谱仪表征了乳胶粒子核壳结构的存在。  相似文献   

16.
Latex particles of up to 2 μm can be made by standard emulsion polymerization methods, but attempts at larger sizes usually results in a crop of smaller particles or coagulation of the latex. In this work, it is shown that use of an oil-soluble initiator (2,2′ azodiisobutyronitrile [AIBN]) provides a means by which large (6 μm diameter) polybutyl acrylate latex particles can be made by sequential core-shell polymerizations. It is suggested that the limited water solubility of AIBN decreases the formation of secondary particles and that the lower ionic strength of the water phase enhances stability of the latex compared to a conventional persulfate initiator. To further minimize formation of secondary particles, long reaction times and progressively larger proportions of seed latex are used in successive reactions. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
Hsiu-Jung Chiu 《Polymer》2005,46(11):3906-3913
Segregation morphology of poly(3-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) and poly(3-hydroxybutyrate-co-10% 3-hydroxyvalerate) (P(HB-co-10% HV)/PVAc blends crystallized at 70 °C have been investigated by means of small angle X-ray scattering (SAXS). Morphological parameters including the crystal thickness (lc) and the amorphous layer thickness (la) were deduced from the one-dimensional correlation function (γ(z)). Blending with PVAc thickened the PHB crystals but not the P(HB-co-10% HV) crystals. On the basis of the composition variation of la, and the volume fraction of lamellar stacks (?s) revealed that PHB/PVAc blends created the interlamellar segregation morphology when the weight fraction of PVAc (wPVAc)≤0.2 and the interlamellar and interfibrillar segregation coexisted when wPVAc>0.2, while P(HB-co-10% HV)/PVAc blends yielded the interfibrillar segregation morphology at all blend compositions. For both PHB/PVAc and P(HB-co-10% HV)/PVAc blends, the distance of PVAc segregation was promoted by increasing PVAc composition and the distance of PVAc segregation in P(HB-co-10% HV)/PVAc blends was greater than in PHB/PVAc at a given PVAc composition. The crystal growth rate played a key role in controlling the segregation of PVAc.  相似文献   

18.
Poly(urethane acrylate)/poly(glycidyl methacrylate-co-acrylonitrile) core-shell composite particles were prepared using two-stage emulsion polymerization. Composite particle sizes were varied from 48 to 200 nm by introducing polyoxyethylene groups into the urethane acrylate molecules. The morphology of the two-stage composite latex was inferred using surface energy measurements and titration of the emulsion. In the two-stage latex, which was prepared using relatively small core particles (about 40 nm), an inverted core-shell morphology was obtained. It was believed that the high polarity of the core surface and the low stage ratio of core to shell made the core-shell morphology more unstable thermodynamically. When the core of the two-stage latex was more crosslinked, the morphology was perfectly prevented from inverting because a higher kinetic barrier between the core-shell and inverted core-shell structures was achieved. The impact strength of the modified epoxy resin increased with the decrease of composite particle sizes and the increase of the shell thickness. In particular, when the average size of the composite particle was 50 nm and the stage ratio was 70/30, the impact strength of the modified epoxy resin increased more than 20 times compared to that of pure epoxy resin. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1589–1600, 1997  相似文献   

19.
交联聚乙酸乙烯酯胶乳的合成   总被引:3,自引:0,他引:3  
分别以二乙烯基苯、双甲基丙烯酸乙二醇酯和甲基丙烯酸烯丙基酯(AMA)为交联剂,十二烷基硫酸钠(SLS)为乳化剂,过硫酸铵为引发剂,合成了交联聚乙酸乙烯酯(PVAc)胶乳。结果表明,AMA是乙酸乙烯酯乳液聚合最理想的交联剂,其用量为单体量的2%时,交联度可达到85%以上。所用SLS的浓度为11.6mmol/L时,合成了交联度为87.4%、粒径为84.5nm的交联PVAc胶乳。  相似文献   

20.
张奎  屈龙  张红  朱勇  王平华 《粘接》2009,30(11):51-54
以醋酸乙烯酯(VAc)为核单体,丙烯酸丁酯(BA)为壳单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,采用分阶段饥饿态加料方式和半连续乳液聚合方法合成了具有硬核软壳结构的聚(醋酸乙烯酯/丙烯酸丁酯)。采用OP-10和十二烷基硫酸钠(SDS)质量比为2:1的复合乳化剂,用量为4%左右时乳液稳定;壳单体的滴加速度在5~6g/h时,聚合体系稳定,且转化率高。用FT—IR分析了聚合物的结构;并用透射电镜表征了乳胶粒结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号