首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Microforming process is a promising micromanufacturing technology for producing microparts due to its high efficiency, low production cost and good product quality. The occurrence of size effect in the process, however, leads to the uncertainties in process determination, tooling design and product quality control and renders the design full of challenges. In-depth study of material deformation behavior in microforming process is thus crucial for development of quality microparts. In this research, the micro compound blanking and deep drawing of copper sheet is conducted. To investigate the size effect, the similarity theory is employed in die design and deformation process simulation. The grain size effect is studied by preparing the copper sheets with different grain sizes, while the feature size effect is also studied via using different punch radii. Based on the analysis of experimental results, it is found that the deformation load decreases with the increase of grain size, but this decrease is not significant when there are only a few grains in the cross section of the sheet metal. The deformation becomes inhomogeneous with the decrease of formed part size and the increase of grain size. This further leads to the irregular geometry and rough surface finish of the formed part. Furthermore, the simulation is carried out to reveal the entire deep drawing process. The deformation loads predicted by simulation have the same trend as the experimental ones, but the difference exists in-between. This indicates that the simulation of microforming process needs to consider the inhomogeneous deformation of material in the process.  相似文献   

2.
摩擦焊过程中界面的塑性变形是摩擦焊的核心,中以宇航工程常用的构件材料LY12合金为研究对象,建立了电场条件下棒状试件摩擦焊的热力耦合塑性成形有限元分析模型,获得了焊接过程中焊接界面处材料的温度场、应变场、应力场、电场强度等物理参量场,并应用Yada模型建立了LY12合金摩擦焊接过程显微组织的演化模型,计算了摩擦焊接过程动态再结晶区的分布及再结晶区晶粒的尺寸,并分析研究了上述场变量对电场条件下连续驱动摩擦焊成形工艺及成形件质量的影响。  相似文献   

3.
Numerical simulations can provide insight into physical phenomena during alloy solidification processes that cannot be observed experimentally. These model predictions depend on the material, process and numerical parameters which contain inherit uncertainties due to their origin in experimental measurements or model assumptions. As a step towards understanding the effect of uncertain inputs on solidification process modelling, uncertainty quantification and sensitivity analysis are performed on a transient model of transport phenomena during the solidification of grain refined Al-4.5 wt.% Cu in a rectangular cavity. The effect of microstructural model parameters, thermal boundary conditions and material property input uncertainties are examined for their effect on macrosegregation levels and solidification time. Predictions of the macrosegregation level are most sensitive to the dendrite arm spacing of the rigid mushy zone.  相似文献   

4.
Microstructure optimization in design of forging processes   总被引:3,自引:0,他引:3  
A new approach based on sensitivity analysis for optimizing the microstructure development during the forging processes is proposed in this work. The analytical sensitivities of the recrystallization volume fraction and dynamically recrystalized grain size with respect to the design variables are derived. The mean grain size in each finite element is introduced so that the complex recrystallization mechanics, such as no recrystallization, partial recrystallization and complete recrystallization are all considered. The objective is to minimize a function describing the variance of mean grain size and the average value of mean grain size in the whole final product. Two constraints are imposed on die underfill and excessive material waste. Two different kinds of design variables are considered, including state parameter (initial shape of billet) and process parameter (die velocity). The optimization scheme is demonstrated with the design of a turbine disk made of Waspaloy in non-isothermal forging process. The optimal initial shape of billet and the die velocity are obtained.  相似文献   

5.
为找出微成形过程中材料塑性与几何尺寸间的关系,在常温下对具有不同晶粒尺寸和几何尺寸的铜试件进行了拉伸实验.结果表明,在试件直径不变条件下,随着晶粒尺寸的增大,材料的延伸率逐渐降低;在晶粒尺寸不变条件下,随着试件直径的减小,材料延伸率在逐渐降低;材料的延伸率与试件晶粒个数有关;随着晶粒尺寸的增大或试件直径的减小,材料延伸率的波动性在逐渐增大.为微成形工艺设计、模具设计提供了必要的信息和基础数据.  相似文献   

6.
Critical rotating components used in the hot section of gas turbine engines are subject to cyclic loading conditions during operation, and the life of these structures is governed by their ability to resist fatigue. Since it is well known that microstructural parameters, such as grain size, can significantly influence the fatigue behavior of the material, the conventional processes involved with the manufacture of these structures are carefully controlled in an effort to engineer the resulting microstructure. For a commercial Ni-base superalloy, RR1000, the development of process models and deformation mechanism maps has enabled not only control of the resultant grain size but also the ability to tailor and manipulate the resulting grain boundary character distribution. The increased level of microstructural control was coupled with a physics-based fatigue model to form an integrated computational materials engineering framework that was used to guide the design of damage-tolerant microstructures. Simulations from a 3D crystal plasticity finite element model were used to identify microstructural features associated with strain localization during cyclic loading and to guide the design of polycrystalline microstructures optimized for fatigue resistance. Conventionally processed and grain boundary engineered forgings of a commercial Ni-based superalloy, RR1000, were produced to validate the design methodology. For nominally equivalent grain sizes, high-resolution strain maps generated via digital image correlation confirmed that the high density of twin boundaries in the grain boundary engineered material were desirable microstructural features as they contribute to limiting the overall length of persistent slip bands that often serve as precursors for the nucleation of fatigue cracks.  相似文献   

7.
The final mechanical properties of components greatly depend on their grain size. It is necessary to study the grain evolution during different thermomechanical processes. In the study, the real-time austenite grain evolution of a high-strength low-alloy (HSLA) steel during the soaking process is investigated by in situ experiments. The effects of different deformation parameters on the dynamic recrystallization (DRX) kinetic behaviors are investigated by hot compression experiments. Based on the observations and statistics of the microstructures at different thermomechanical processes, a unified grain size model is established to evaluate the effects of soaking parameters and deformation parameters on the austenite grain evolution. Also, the DRX kinetic model and critical strain model are established, which can describe the effects of the soaking process on the DRX kinetics process well. The established grain size model and DRX kinetic model are compiled into the numerical simulation software using Fortran language. The austenite grain evolution of the material under different deformation conditions is simulated, which is consistent with the experimental results. It indicates that the established model is reliable, and can be used to simulate and predict the grain size during different thermomechanical processes accurately.  相似文献   

8.
Recently, grain refinement and grain misorientation have been experimentally studied for various materials with ultra-fine grained microstructures, which are achieved by the multi-pass cold rolling process. In this paper, a numerical framework is developed to model the evolution of grain size and grain misorientation based on a dislocation density-based material model. Novel finite element models embedded with the dislocation density-based material subroutine are developed to model the plastic deformation and microstructural evolution during the multi-pass cold rolling process. The multi-pass cold rolling processes of commercially pure titanium (CP Ti) and aluminum (AA 1200) are simulated in order to assess the validity of the numerical solution through comparison with experiments. The dislocation density-based material models are developed for CP Ti and AA 1200, which reproduce the observed material constitutive mechanical behavior under various strains, strain rates and temperatures occurring in the cold rolling process. It is shown that the developed model captures the essential features of the material mechanical behaviors and predicts a minimum grain size of below 100 nm after five-pass cold rolling of CP Ti with equivalent strains up to 2.07 and the average incidental dislocation boundary (IDB) misorientation angle increased to 4.6° after six-pass cold rolling of AA 1200 with equivalent strains accumulated to 5.77.  相似文献   

9.
根据花键轴零件冷搓时所使用刀具的参数以及轴坯的基本参数建立模型;对花键轴的冷搓加工过程进行数值模拟,模拟的花键齿形与实际相符。在此基础上设置模型的微观仿真参数,从微观层面上对加工过程中微观尺寸的变化进行仿真。由于材料性能与其晶粒尺寸有关,故冷搓成形过程中以微观晶粒尺寸与数量变化情况作为指标,采用正交试验探究摩擦因数、搓齿运动速度以及环境温度对晶粒度的影响程度。通过极差和方差法分析3个因素对材料微观晶粒尺寸的影响,得到搓齿运动速度对晶粒尺寸的影响显著。  相似文献   

10.
Design of forging process variables under uncertainties   总被引:4,自引:0,他引:4  
Forging is a complex nonlinear process that is vulnerable to various manufacturing anomalies, such as variations in billet geometry, billet/die temperatures, material properties, and workpiece and forging equipment positional errors. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion, and reduced productivity. Identifying, quantifying, and controlling the uncertainties will reduce variability risk in a manufacturing environment, which will minimize the overall production cost. In this article, various uncertainties that affect the forging process are identified, and their cumulative effect on the forging tool life is evaluated. Because the forging process simulation is time-consuming, a response surface model is used to reduce computation time by establishing a relationship between the process performance and the critical process variables. A robust design methodology is developed by incorporating reliability-based optimization techniques to obtain sound forging components. A case study of an automotive-component forging-process design is presented to demonstrate the applicability of the method.  相似文献   

11.
This paper investigates the Wire-EDM behaviour of various newly developed electro-conductive ZrO2 ceramic matrix composites. The influence of the type and grain size of the second phase (WC, TiC and TiCN, from micro sized to nano sized grains) on the EDM material removal rate and obtained surface roughness is experimentally studied. This investigation is based on a design of experiments supported by a fundamental study of the material removal mechanisms. It is shown that a variation in grain size of the second phase material significantly influences the EDM performance, which can be largely related to the microstructure and the properties of the developed material.  相似文献   

12.
7050铝合金喷丸过程中微观组织演变机理及纳米化结构与工艺参数的关系还没有得到广泛研究。基于位错密度理论对喷丸强化诱导7050铝合金表层晶粒细化进行研究。利用有限元方法模拟7050铝合金受单个和多个喷丸冲击过程,建立将喷丸强化的有限元模型与累积塑性应变引起的位错密度演化模型相结合的混合数值模型,并利用遗传算法得到混合模型的数值参数,用以预测喷丸强化层的位错密度和晶粒尺寸梯度分布,为研究喷丸强化7050铝合金的组织结构强化机理提供依据。建立喷丸尺寸、速度和覆盖率等工艺参数与强化层内晶粒细化结构的物理联系和数量关系。结果表明,从单个喷丸冲击到大量随机喷丸冲击过程都会在强化层内产生显著的晶粒细化;强化层内位错密度增加、晶粒细化的程度以及强化影响深度随着喷丸覆盖率、速度、尺寸的增加而增加;较高的喷丸覆盖率和强度可生成纳米级晶粒结构表面层。综合运用JC本构有限元模拟、四阶五级RKF算法解方程、遗传算法优化调参、概率约束方法控制随机喷丸以及VUMAT子程序定义本构关系,实现7050铝合金喷丸强化微宏观联系的定量研究,可为设计7050铝合金喷丸工艺参数获得所需纳米结构提供理论依据。  相似文献   

13.
One of the most important issues that hinder the widespread use of friction stir (FS) processing, an effective microstructural modification technique, is the lack of accurate predictive tools that enable the selection of suitable processing parameters to obtain the desired grain structure. In this study, a model that is capable of predicting the resulting average grain size of a FS-processed material from process parameters is presented. The proposed model accounts for both dynamic recrystallization and grain growth. Several AZ31 magnesium samples were FS processed in different combinations of rotational and translational speeds. The thermal fields and resulting average grain size were measured, and the effective strain rates were approximated analytically. The results show that the proposed model is capable of predicting the resulting grain size of FS-processed materials.  相似文献   

14.
动态再结晶过程的三维元胞自动机模拟   总被引:2,自引:0,他引:2  
建立了一类模拟金属材料动态再结晶的三维元胞自动机模型,该模型把宏观尺度的热加工参数和介观尺度的位错密度变化耦合在一起,考虑了动态回复、形核率、应变和初始晶粒尺寸的影响.利用这个模型可以追踪动态再结晶过程微观组织的变化,并且可以得到再结晶晶粒形态及晶粒的取向和大小.模拟结果与动态再结晶生长动力学理论符合较好.模型预测的再结晶微观组织及晶相形状和试验微结构吻合较好.  相似文献   

15.
A new model is proposed that aims to capture within a single modelling frame all the main microstructural features of a severe plastic deformation process. These are: evolution of the grain size distribution, misorientation distribution, crystallographic texture and the strain-hardening of the material. The model is based on the lattice curvature that develops in all deformed grains. The basic assumption is that lattice rotation within an individual grain is impeded near the grain boundaries by the constraining effects of the neighbouring grains, which gives rise to lattice curvature. On that basis, a fragmentation scheme is developed which is integrated in the Taylor viscoplastic polycrystal model. Dislocation density evolution is traced for each grain, which includes the contribution of geometrically necessary dislocations associated with lattice curvature. The model is applied to equal-channel angular pressing. The role of texture development is shown to be an important element in the grain fragmentation process. Results of this modelling give fairly precise predictions of grain size and grain misorientation distribution. The crystallographic textures are well reproduced and the strength of the material is also reliably predicted based on the modelling of dislocation density evolution coupled with texture development.  相似文献   

16.
PCBN cutting inserts have been more often used in order to attend to the demands of an economically viable process and to lead to a proper workpiece surface quality. A proper application of this cutting material requires its adequate processing. Plunge-face grinding is used for finishing the inserts after sintering. To choose a suitable grinding tool and process parameters, the properties of the ground cutting inserts must be taken into account. Therefore, the influence of PCBN grain size and composition on the insert cutting edge and surface quality has to be investigated. This work aims to give an overview of material removal mechanisms, process forces and abrasive grain wear during grinding different PCBN inserts. It was found that the insert quality depends mainly on the material removal mechanism, which in the studied case is defined by the PCBN grain size.  相似文献   

17.
Cemented carbides are hard and brittle materials. Their material properties are adjusted by their chemical composition, in particular their average hard phase grain size and their binder fraction. The research paper focusses on grinding of cemented carbides with cobalt (Co) as binder and tungsten carbide (WC) as hard phase material. Within the research paper, it is discussed if and to what extent the cemented carbide composition affects the occurring thermo-mechanical load collective in the grinding process. In particular, the influence of the average WC grain size and the cobalt fraction on the thermo-mechanical load collective is investigated and explained by the cemented carbide material properties. The results of the publication contribute to a knowledge-based design of cemented carbide grinding processes.  相似文献   

18.
通过表面层理论和金属晶体塑性变形原理解释微细薄板材料在塑性变形中产生尺寸效应的内在机理。引入尺度参数,对经典的Hall-Petch公式进行修正,建立基于表面层模型理论的尺度依赖材料模型。利用所建立的材料模型分析微细薄板厚度及其晶粒尺寸对材料成形流动性能的影响。在晶粒尺寸一定的情况下,随着微细薄板厚度的减小,材料流动应力逐渐降低;晶粒尺寸越大的微细薄板,其流动变形的尺寸效应现象越明显。利用不同厚度的不锈钢和纯铜箔材的微细薄板拉伸真应力-应变曲线对所建立的材料模型进行验证,计算结果与实验结果比较吻合,验证了所建立的材料模型的合理性。  相似文献   

19.
A new process design method for controlling microstructure development during hot metal deformation processes is presented. This approach is based on modern control theory and involves state- space models for describing the material behavior and the mechanics of the process. The challenge of effectively controlling the values and distribution of important microstructural features can now be systematically formulated and solved in terms of an optimal control problem. This method has been applied to the optimization of grain size and certain process parameters such as die geometry profile and ram velocity during extrusion of plain carbon steel. Various case studies have been investigated, and experimental results show good agreement with those predicted in the design stage.  相似文献   

20.
Friction stir additive manufacturing is a newly developed solid-state additive manufacturing technology. The material in the stirring zone can be re-stirred and reheated, and mechanical properties can be changed along the building direction. An integrated model is developed to investigate the internal relations of process, microstructure and mechanical properties. Moving heat source model is used to simulate the friction stir additive manufacturing process to obtain the temperature histories, which are used in the following microstructural simulations. Monte Carlo method is used for simulation of recrystallization and grain growth. Precipitate evolution model is used for calculation of precipitate size distributions. Mechanical property is then predicted. Experiments are used for validation of the predicted grains and hardness. Results indicate that the average grain sizes on diff erent layers depend on the temperature in stirring and re-stirring processes. With the increase in building height, average grain size is decreased and hardness is increased. The increase in layer thickness can lead to temperature decrease in reheating and re-stirring processes and then lead to the decrease in average grain size and increase of hardness in stir zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号