首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trend in die/mold machining is to produce highly quailed surface using the high-speed hard machining with the ball-end cutter. The ball-end milling is, however, less efficiency than the flat end milling. It is important to optimize the feedrate that gives the maximum material removal rate constrained by an allowable surface roughness. The state-of-art of the CBN ball-end cutter technology allows increasing the tooth feed for high-speed and high-efficiency machining. However, because the spherical shape of the cutter can result in the scallop-liked cusps on the machined surface, the surface roughness consideration makes a feedrate limitation to the CBN cutter. In this paper, the optimization of the feedrate by considering the generated-scallop effect of the ball-end cutter has been studied. It was found that the tooth feed must be kept within one third of the path pick in order to keep the feed-interval scallop height not over the path-interval scallop height. Therefore, the potential capability of the CBN cutter for the larger tooth feed (i.e. high efficient) machining can not be fully exploited. It was found a notch-cut on the center of the ball-end cutter reduced the feed-interval cusp height, thus allowing an increased feedrate of more than 50% compared with the standard ball-end cutter. If the parameters of the notch-cut profile can be optimized, it is believed that the feedrate can be further increased.  相似文献   

2.
Feed optimization for five-axis CNC machine tools with drive constraints   总被引:6,自引:0,他引:6  
Real time control of five-axis machine tools requires smooth generation of feed, acceleration and jerk in CNC systems without violating the physical limits of the drives. This paper presents a feed scheduling algorithm for CNC systems to minimize the machining time for five-axis contour machining of sculptured surfaces. The variation of the feed along the five-axis tool-path is expressed in a cubic B-spline form. The velocity, acceleration and jerk limits of the five axes are considered in finding the most optimal feed along the tool-path in order to ensure smooth and linear operation of the servo drives with minimal tracking error. The time optimal feed motion is obtained by iteratively modulating the feed control points of the B-spline to maximize the feed along the tool-path without violating the programmed feed and the drives’ physical limits. Long tool-paths are handled efficiently by applying a moving window technique. The improvement in the productivity and linear operation of the five drives is demonstrated with five-axis simulations and experiments on a CNC machine tool.  相似文献   

3.
Common problems experienced in milling processes include forced and chatter vibrations, tolerance violations, chipping and premature wear of the tools. This paper presents an expert system which attempts to troubleshoot the source of milling problems by utilising dynamics data coupled with the opinion of the operator and acoustic Fourier spectrum data taken from the cutting process. The expert system utilises a fuzzy logic based process to interpret the signals and information, and recommends possible alterations to the process to achieve high-performance milling operations.Specific inference engines were developed to assess the chatter stability, variation in cutting force coefficient, tool run-out and forced vibration characteristics of the system. Lastly, a stability lobe plot interpretation engine to automate the lobe selection process and recommend new, chatter free cutting conditions, was also developed. The chatter stability inference engine was tested with real cutting data, through acoustic measurements taken from various cutting conditions on an aluminium milling process. The chatter inference engine successfully determined the stability of the system for each sampled cutting condition. The robustness of the troubleshooting system depends on the accuracy of acoustic and frequency response measurements.  相似文献   

4.
Five-axis milling mechanics for complex free form surfaces   总被引:2,自引:0,他引:2  
Accurate and fast prediction of machining forces is important in high performance cutting of free form surfaces that are commonly used in aerospace, automotive, biomedical and die/mold industries. This paper presents a novel and generalized approach for prediction of cutting forces in five-axis machining of parts with complex free form surfaces. Engagement simulations between cutter and part are performed precisely along the tool path by a recently developed boundary representation method. Moreover, mathematical model for five-axis milling mechanics is developed for any given solid model of parts with complex free form surfaces. Theoretical simulations and experimental validations show that cutting forces are predicted fast and precisely for five-axis machining of complex free form surfaces.  相似文献   

5.
Optimal control of the machining process in orthopedic surgery can not only increase productivity but also ensure safety during tool usage. The authors have developed a technology for a force control system. The system has two modes of operation: the “air-cutting mode” and the “force control mode.” In the air-cutting mode, tool feed is scheduled by predicting the air and bone-cutting zones from the CAD/CAM system. In the force control mode, the software monitors the cutting force and the cutting temperature, and it controls the feed override according to the difference between the real and the desired cutting force. The software is installed on a robot controller, and its effectiveness is evaluated with a urethane bone.  相似文献   

6.
This paper presents a model for the prediction of surface topography in peripheral milling operations taking into account that the tool vibrates during the cutting process. The model includes the effect of tool vibrations in the equations of the cutting edge paths, which are transformed into equivalent polynomial equations and solved for discrete positions along the feed direction by applying a standard root finder. Through this procedure, surface topography generation is simplified with respect to other models in literature. The model allows the topography, the roughness values and the form errors of the milled surface to be predicted. Cutting test results show good agreement with model predictions.  相似文献   

7.
A heuristic feedrate optimization strategy for NURBS toolpaths   总被引:1,自引:0,他引:1  
K. Erkorkmaz  M. Heng 《CIRP Annals》2008,57(1):407-410
This paper presents a new and computationally efficient feedrate optimization strategy for spline toolpaths. The technique combines analytically derived compatibility equations with a heuristic search method, which helps generate feed profiles with reduced cycle time while adhering to axis velocity, acceleration, torque, and jerk constraints. Feed modulation is realized using the S-curve function, which allows optimized feed profiles to be implemented on existing CNC's. The proposed strategy yields shorter cycle time compared to the frequently used worst-case curvature approach, and converges faster than more elaborate gradient-based optimization techniques. The effectiveness of the new strategy is demonstrated in contour machining experiments.  相似文献   

8.
Contouring control is an effective method of providing precision machine tool control, and various such methods have been proposed to date. However, most existing methods require prior exact knowledge of feed drive dynamics. This paper presents a robust contouring control system design that takes into account dynamics modelling errors and disturbances such as friction. We first present a controller design for biaxial feed drive systems that enables assignment of controller gains, for reducing the error component orthogonal to the desired contour curve, independent of the tangential error component. Although this design provides better control performance with small control input variance, an inherent contour error exists because of the difficulty in calculating the exact contour error for any contour curve in real time. To address this problem, a reference adjustment method is used to estimate the actual contour error. A robust contouring controller is proposed based on the variable structure control. The effectiveness of the robust controller is demonstrated by experimental results using circular and non-circular contour curves.  相似文献   

9.
Critical comparison is presented related to the stability behaviour of milling processes performed by conventional, variable helix and serrated milling tools. The paper presents a general milling model linked to any non-proportionally damped dynamic system. Extended multi frequency solution and semi-discretization are implemented and used to calculate the stability of stationary milling. Measurements performed in industrial environment validate the general numerical algorithm that is able to predict the stability conditions of milling processes carried out by cylindrical cutters of optional geometry. Both the calculations and the measurements confirm that, for roughing operations, the highest stability gain can be achieved by serrated cutters. It is also demonstrated that variable helix milling tools can achieve better stability behaviour only if their geometry is optimized for the given cutting operation.  相似文献   

10.
This paper presents a robust adaptive controller design for multi-axis feed drives systems. The proposed method is designed to compensate for the coupling effects among multiple axes that are neglected in most feed drive controllers. Because inertial force from one axial motion affects the contact force between mechanical parts in other axes, the magnitude of friction at the contact surface varies. Considering this coupling effect in controller designs can improve control performance. Because the coupling effect cannot be known in advance, and it varies with respect to environmental conditions such as temperature, this paper first presents an adaptive controller design. Next, the design is extended to have robust stability for unanticipated plant modelling errors disturbances, because the robustness of adaptive controllers is known to be low due to the complex mechanism of controllers and estimators of plant model parameters. The design problem of the robust controller is formulated as a minimization problem under the linear matrix inequality constraints. The effectiveness of the adaptive multi-axis controller is demonstrated by comparative experiments with an adaptive controller that neglects the coupling effect. In addition, the robust adaptive controller is confirmed to be effective by comparison with a non-robust adaptive controller.  相似文献   

11.
Virtual cutting and optimization of three-axis milling processes   总被引:3,自引:1,他引:2  
This paper presents generalized process simulation and optimization strategies to predict and improve the performance of three-axis milling operations. Cutter-part engagement conditions are extracted from a solid modeling system, which can handle free form part surfaces found in dies and molds. The cutting force distribution along the engaged cutting edge-part surface is evaluated based on the laws of mechanics of milling. By integrating the distributed force along the cutting edge, total forces, torque and power are either predicted analytically using closed-form solutions, or numerically if the cutting tool shape is discontinuous. Simulation results are then used in a constraint-based optimization scheme to maximize the material removal rate (MRR) by calculating acceptable feedrate levels. The proposed virtual milling system is demonstrated experimentally in milling a stamping die with free form surfaces.  相似文献   

12.
In CNC machining, an optimal process plan is needed for higher productivity and machining performance. This paper proposes a mechanistic cutting force model to perform feedrate scheduling that is useful in process planning for indexable end milling. Indexable end mills, which consist of inserts and a cutter body, have been widely used in the roughing of parts in the mold industry. The geometry and distribution of inserts compose a discontinuous cutting edge on the cutter body, and tool geometry of indexable end mill varies with axial position due to the geometry and distribution of inserts. Thus, an algorithm that calculates tool geometry data at an arbitrary axial position was developed. The developed cutting force model uses cutting-condition-independent cutting force coefficients and considers run out, cutter deflection, geometry variation and size effect for accurate cutting force prediction. Through feedrate scheduling, NC code is optimized to regulate cutting forces at given reference force. Experiments with general NC codes show the effectiveness of feedrate scheduling in process planning.  相似文献   

13.
The load applied to a machine tool feed drive changes during the machining process as material is removed. This load change alters the Coulomb friction of the feed drive. Because Coulomb friction accounts for a large part of the total friction the friction compensation control accuracy of the feed drives is limited if this nonlinear change in the applied load is not considered. This paper presents a new friction compensation method that estimates the machine tool load in real time and considers its effect on friction characteristics. A friction observer based on a Kalman filter with load estimation is proposed for friction compensation control considering the applied load change. A specially designed feed drive testbed that enables the applied load to be modified easily was constructed for experimental verification. Control performance and friction estimation accuracy are demonstrated experimentally using the testbed.  相似文献   

14.
This paper outlines the development of an optimization strategy to determine the optimum cutting parameters for multipass milling operations like plain milling and face milling. The developed strategy is based on the “maximum production rate” criterion and incorporates eight technological constraints. The optimum number of passes is determined via dynamic programming, and the optimal values of the cutting conditions are found based on the objective function developed for the typified criterion by using a non-linear programming technique called “geometric programming”. This paper also underlies the importance of using optimization strategies rather than handbook recommendations as well as pointing out the superiority of the multipass over the single-pass optimization approach.  相似文献   

15.
直线电机直接驱动进给系统是实现数控机床进给高速化的主要形式,但加工过程中切削力甚至运动部件质量的变化都是系统的干扰,易引起系统不稳定和定位精度下降。离线模糊推理、在线对控制系统实现自校正的控制方法能提高系统的抗干扰能力,并具有良好的实时性。为了研究系统的稳定性,本文介绍了这种基于模糊推理自校正控制的直接驱动进给系统稳定性分析方法,为同类系统设计提供理论参考。  相似文献   

16.
Solid Freeform Fabrication (SFF) gives engineers a new freedom to build parts that have thus far proved difficult to manufacture using conventional machining. However, the surface finish and accuracy of SFF parts are lower than those of conventionally machined parts. A process combination of additive and subtractive techniques is currently being developed in order to overcome this problem. A novel hybrid approach of our group called ‘3D welding and milling’ uses gas metal arc welding as an additive and milling as a subtractive technique, thereby exploiting the advantages of both processes. Compared to other deposition processes, gas metal arc welding is the most economic way of depositing metals. In this paper, the initial results of the process development and the characterization of the parts fabricated by this process are reported.  相似文献   

17.
Specific cutting energy is an important concept because it affects not only surface integrity but also process sustainability. However, the predictive power of traditional analytical models for specific energy is significantly limited by the complex mechanical–thermal coupling in cutting. This paper has proposed a new hybrid approach to integrate data-driven machine learning and process mechanics for the prediction of specific cutting energy. Compared to traditional analytical models, the accuracy of the hybrid approach has been validated in milling of H13 tool steel and Inconel 718. The predictive model is also transferable to other cutting processes.  相似文献   

18.
This paper presents the development implementation and testing of an active controlled palletised workholding system for milling operations. The traditional approach to controlling vibration in a machining system is to develop control systems for cutting tools or machine spindles as in the case of milling machines. This work is a deviation from the traditional approach and targets a workholding system for the control of unwanted vibration. Palletised workholding systems, due to their compact design, offer an opportunity to design active control systems that are economical and easier to implement in the case of milling machines. The active control system developed here is based on an adaptive filtering algorithm, the filtered X-LMS, and employs piezo-actuators for dynamic control force. The system has been tested experimentally to demonstrate the reduction in dynamic force due to vibration. Extensive testing has been carried out to validate the performance of the system in terms of parameters of practical importance such as improvement in surface finish and increase in tool life.  相似文献   

19.
Feed rate optimization for 3-axis ball-end milling of sculptured surfaces   总被引:1,自引:1,他引:1  
The aim of this research is to improve the productivity of CNC machine tools by optimizing feed rate. To optimize feed rate two programs were used: “ACIS” (with scheme language) and “Visual Basic”. The scheme program for modeling the work piece, tool, cutting edge, and calculating maximum cutting force and the Visual Basic program to control all the activities linked to the ACIS program for estimating optimized feed values. Laboratory tests were conducted to verify the results from the modeling, using an insert-type one-flute ball-end cutter on a CK45 carbon steel work piece. No coolant was used throughout the experimental works. Comparisons were made between the maximum cutting forces, in the “fix” feed rate tests. The results indicate significant increases in productivity, which can be achieved, by using the optimized feed rate method.  相似文献   

20.
Feedrate scheduling is crucial for CNC systems to generate a smooth movement which is able to satisfy increasing requirements on machining quality and efficiency. In this paper, a novel adaptive feedrate interpolation method is proposed for NURBS tool path with drive constraints. The tool path is first expressed in NURBS form, and then the satisfaction conditions of drive constraints are derived according to the kinematic and geometric characteristics of the NURBS tool path. On this base, a proportional adjustment algorithm, which can quantitatively reduce the accelerations and jerks of drive axes at the sensitive regions of feed profile, is proposed to achieve the new positions of violated sampling points. After each adjustment, a curve evolution strategy is used to ensure the feed profile is locally or globally deformed to the target positions with a good smoothness of path curve and the avoidance of re-interpolation. Through the iterative adjustment, a smooth feed profile with limited velocities, accelerations and jerks of drive axes is thus yielded along the entire tool path. Finally, performances of the proposed method are validated by performing both simulations and experiments on two freeform NURBS curves. The results show the effectiveness and reliability of the proposed feedrate interpolation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号