首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
When five substituents of hapalosin were placed on D-glucose, molecular modeling revealed that the substituents on mimetics 2 and 3 occupy similar spatial positions as the corresponding substituents on hapalosin. Mimetic 3 and all the glucopyranoside intermediates generated in its synthesis were assessed for their ability to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) or the multidrug resistance-associated protein (MRP). None of the sugar compounds were as effective as hapalosin in inhibiting P-gp in cytotoxicity and drug accumulation assays using MCF-7/ADR cells. By contrast, four D-glucose compounds exhibited similar efficacy as hapalosin in antagonizing MRP in cytotoxicity assays with HL-60/ADR cells.  相似文献   

3.
4.
5.
Mouse leukemic cell subline L1210/VCR exerts expressive multidrug resistance (MDR) that is mediated by P-glycoprotein. Cells originally adapted to vincristine are also extremely resistant to doxorubicin. Resistance to both vincristine and doxorubicin is connected with depression of drug uptake. While resistance of L1210 cells to vincristine could be reversed by verapamil as chemosensitizer, resistance of cells to doxorubicin was insensitive to verapamil. Action of verapamil (well-known inhibitor of PGP activity) on multidrug resistance was often used as evidence that MDR is mediated by PGP. From this point it may be possible that the resistance of L1210/VCR cells to vincristine is mediated by PGP and the resistance to doxorubicin is mediated by other PGP-independent system. Another and more probable explanation of different effect of verapamil on resistance of L1210/VCR cells to vincristine and doxorubicin may be deduced from the following fact: Using UV spectroscopy we found that doxorubicin dissolved in water buffered medium interacts effectively with verapamil. This interaction may be responsible for the decrease of concentration of both drugs in free effective form and consequently for higher survival of cells. In contrast to doxorubicin vincristine does not give any interaction with verapamil that is measurable by UV spectroscopy and resistance of L1210/VCR cells to vincristine may be fully reversed by verapamil.  相似文献   

6.
Treatment-induced secondary drug resistance of tumor cells is a major cause of relapsed disease and therapeutic failure in cancer patients. It has been shown that the expression of the multidrug resistance MDR1/P-glycoprotein gene could be induced by short-term in vitro exposure of cells to protein kinase C (PKC) agonists or different chemotherapeutic drugs. We studied whether other genes involved in drug resistance are regulated by similar signaling pathways. Transient (up to 24 h) treatment of HL-60 or K562 leukemia cells with phorbol 12-myristate 13-acetate (TPA) resulted in increased steady-state level of LRP (lung resistance-related protein) mRNA and protein. Among conventional chemotherapeutic drugs tested, only cytarabine (Ara C) induced the LRP mRNA expression though no increase in LRP protein was detected. LRP gene activation was not detectable in either H9 T-cell leukemia or in solid carcinoma cell lines (BT-20, ZR-75-1, and SW 1573). None of the agents influenced the levels of MRP (multidrug resistance-associated protein) mRNA in any cell line tested. In HL-60 cells, the LRP activation by TPA or Ara C was sustained for at least 23 days after withdrawal of inducing agents. bis-Indolylmaleimide I, a potent PKC inhibitor, attenuated TPA-induced LRP activation. In contrast, the inhibitor had no effect on the LRP induction by Ara C. These data indicate that the LRP gene can be activated by different mechanisms, some of which involve PKC.  相似文献   

7.
Prior studies have shown that, in some human tumour cells, increased expression of the multidrug resistance gene MDR1 can be induced in response to certain stress conditions such as a transient exposure to cytotoxic agents. Little is known about the possibility of increasing the expression of the recently cloned multidrug resistance-associated protein (MRP) in response to a transient exposure to cytotoxic drugs. In order to examine this possibility, we have used sensitive assays (RT-PCR, flow cytometry) and the sensitive large cell lung cancer cell line, COR-L23/P, and the revertant line (COR-L23/Rev), generated by growing the doxorubicin-selected, MRP-overexpressing resistant variant COR-L23/R without drug exposure for 24-28 weeks. COR-L23/Rev overexpresses MRP, but to a lesser extent than COR-L23/R. COR-L23/Rev rapidly recovered similar levels of MRP mRNA, protein expression, resistance and drug accumulation deficit as COR-L23/R after a 48-72 h exposure to cytotoxic concentrations of doxorubicin or vincristine but not cisplatin. The increase in MRP mRNA could only be detected 3 to 4 days after the transient exposure to drugs. However, when the parental line, COR-L23/P, was exposed to equitoxic doses of doxorubicin, vincristine or cisplatin, no increase in the levels of MRP mRNA could be observed at higher doses (5- to 10-fold the IC50) of doxorubicin or vincristine (but not of cisplatin), we detected a transient increase in the levels of MDR1 mRNA immediately after short-term exposure. In conclusion, we have shown that a human revertant lung cancer cell line (COR-L23/Rev) has the ability to recover quickly, similar levels of MRP expression and resistance as COR-L23/R after a transient exposure to the MDR-drugs doxorubicin and vincristine.  相似文献   

8.
9.
Sphinxolides, a newly described family of cytotoxins from the New Caledonian sponge Neosiphonia superstes, bear structural resemblance to scytophycins. We now demonstrate that the cytotoxicity of sphinxolides is associated with cell cycle arrest in G2-M and induction of apoptosis. Like scytophycins and cytochalasins, sphinxolides caused rapid loss of microfilaments in cultured cells, without affecting microtubule organization. Microfilament reassembly was very slow after removal of the sphinxolide, consistent with the slow recovery of cellular proliferation. Sphinxolides potently inhibited actin polymerization in vitro and the microfilament-dependent ATPase activity of purified actomyosin, indicating a direct effect on actin. Importantly, sphinxolides were equally cytotoxic toward MCF-7 human breast carcinoma cells and a subline which overexpresses P-glycoprotein (MCF-7/ADR). Similarly, overexpression of the multidrug resistance-associated protein MRP by HL-60 cells did not confer resistance to the sphinxolides. These studies demonstrate that sphinxolides are potent new antimicrofilament compounds that circumvent multidrug resistance mediated by overexpression of either P-glycoprotein or MRP. Therefore, these agents may be useful in the treatment of drug-resistant tumors.  相似文献   

10.
11.
12.
The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.  相似文献   

13.
14.
15.
Leukemia/lymphoma cells, clinically refractory to therapy are often associated with expression of P-glycoprotein (P-gp), which is encoded by the multidrug resistance (MDR) gene, mdr1. Cell lines expressing mdr1 exhibit resistance to several structurally unrelated lipophilic drugs, such as anthracyclines, vinca alkaloids, and epopodophyllotoxins. This MDR can be conferred to drug-sensitive cells mdr1 cDNA transfer. In resistant cells, MDR is characterized by overexpression of P-gp and by the enhanced efflux, and P-gp fluorescence probe, rhodamine 123 (Rh 123). This can be circumvented by addition of certain non-cytotoxic drugs, such as verapamil and cyclosporin A.  相似文献   

16.
The multidrug resistance protein 1 (MRP1) gene encodes a transporter protein that helps to protect cells against xenobiotics. Elevated levels of MRP1 in tumor cells can result in active extrusion of a wide range of (anticancer) drugs with different cellular targets, a phenomenon called multidrug resistance (MDR). To explore the protective function of the mouse mrp1 protein during drug treatment, we investigated the toxicity caused by the anticancer drug etoposide-phosphate (ETOPOPHOS) in mice lacking the mrp1 gene (mrp1(-/-) mice). We show here that the lack of mrp1 protein results in increased etoposide-induced damage to the mucosa of the oropharyngeal cavity and to the seminiferous tubules of the testis. The high concentrations of mrp1 that we find in the basal layers of the oropharyngeal mucosa and in the basal membrane of the Sertoli cells in the testis apparently protect wild-type mice against this tissue damage. We also find drug-induced polyuria in mrp1(-/-) mice, which correlates with the presence of mrp1 protein in the urinary collecting tubules, the major site of kidney water reabsorption. Our results indicate that specific inhibitors of MRP1 used to reverse MDR, in combination with carcinostatic drugs transported by MRP1, might lead to drug-induced mucositis, (temporary) infertility, and diabetes insipidus.  相似文献   

17.
To examine the role of multidrug resistance protein 1 (MRP1) and glutathione S-transferases (GSTs) in cellular resistance to antineoplastic drugs, derivatives of MCF7 breast carcinoma cells were developed that express MRP1 in combination with one of three human cytosolic isozymes of GST. Expression of MRP1 alone confers resistance to several drugs representing the multidrug resistance phenotype, drugs including doxorubicin, vincristine, etoposide, and mitoxantrone. However, co-expression with MRP1 of any of the human GST isozymes A1-1, M1-1, or P1-1 failed to augment MRP1-associated resistance to these drugs. In contrast, combined expression of MRP1 and GST A1-1 conferred approximately 4-fold resistance to the anticancer drug chlorambucil. Expression of MRP1 alone failed to confer resistance to chlorambucil, showing that the observed protection from chlorambucil cytotoxicity was absolutely dependent upon GST A1-1 protein. Moreover, using inhibitors of GST (dicumarol) or MRP1 (sulfinpyrazone), it was shown that in MCF7 cells resistance to chlorambucil requires both intact MRP1-dependent efflux pump activity and, for full protection, GST A1-1 catalytic activity. These results are the first demonstration that GST A1-1 and MRP1 can act in synergy to protect cells from the cytotoxicity of a nitrogen mustard, chlorambucil.  相似文献   

18.
The expression of multidrug resistance-associated protein (MRP) mRNA was examined in ten samples of Ewing's sarcoma of bone (ES) and in one nude mice transplantable ES and two malignant peripheral neuroectodermal tumor (MPNT) cell lines using an RT-PCR assay. MRP mRNA expression was recognized in eight of the ten clinical specimen and in all three cell lines. On the other hand, the expression of multidrug resistance gene (MDR1) was demonstrated in three of the ten clinical samples and all three cell lines. Our results may contribute to elucidation of the mechanism of anti-cancer-drug resistance in this tumor.  相似文献   

19.
Overexpression of P-glycoprotein in tumor cells can represent a severe drawback for cancer chemotherapy. P-glycoprotein acts as an efflux transporter for a variety of chemotherapeutic agents. It is encoded by multidrug resistance (mdr) genes of the subfamily 1 in humans (MDR1) and rodents (mdr1a and 1b). Because mdr1 gene expression is inducible in cultured rat hepatocytes and in rat liver with chemical carcinogens such as 2-acetylaminofluorene or aflatoxin B1, which form DNA-binding electrophiles during their metabolism, we investigated whether the DNA-damaging chemotherapeutic drug mitoxantrone may induce multidrug resistance in rodents and in hepatocytes in primary culture. In H4IIE rat hepatoma cells stably transfected with a luciferase construct containing the rat mdr1b promoter, mitoxantrone caused a concentration-dependent increase in promoter activity. Mdr1 gene expression in cultured rat hepatocytes was enhanced at mitoxantrone concentrations greater than or equal to 0.1 microM and in mouse hepatocytes at 5 microM. In hepatocytes from both species, a correlation was found between mdr1 induction and the inhibition of protein synthesis. In vivo, mitoxantrone was a very powerful inducer of mdr1 gene expression in rat liver and small intestine. In rat kidney, induction of mRNA was lower, and a marginal effect was seen in lung. In contrast with rats, no significant induction of mdr1 gene expression was obtained in mouse liver. Probably as a consequence of inhibition of protein synthesis, mitoxantrone did not lead to a pronounced elevation of P-glycoprotein levels in rat liver and kidney.  相似文献   

20.
Multidrug resistance is functionally associated with the expression of a plasma membrane energy-dependent drug efflux pump termed P-glycoprotein, the product of the mdr1 gene. Transfection of P-glycoprotein-expressing doxorubicin-resistant MCF-7 cells with an expression vector containing the cDNA for protein kinase C alpha in the antisense orientation reduces protein kinase C alpha levels and decreases total protein kinase C activity by 75%. This is accompanied by reduced phosphorylation of P-glycoprotein, a 2-fold increase in drug retention, and a 3-fold increase in doxorubicin cytotoxicity. These results provide further evidence that protein kinase C alpha can positively regulate multidrug resistance in MCF-7 cells through posttranslational phosphorylation of P-glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号