首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 46 毫秒
1.
不同分子量HTPB与TDI的固化反应动力学   总被引:1,自引:1,他引:1  
测定了浇注高聚物粘结炸药(PBX)粘结剂固化反应的放热量,探讨了端羟基聚丁二烯(HTPB)分子量对固化反应速率的影响。采用非等温差示扫描量热法(DSC)研究了分子量分别为1500(M1)和2800(M2)的HTPB与2,4-甲苯二异氰酸酯(TDI)固化反应的动力学。结果表明,M1固化体系比M2固化体系的粘度增长迅速,固化放热量大。M1体系固化反应表观活化能约为55.87 kJ·mol-1,反应级数为0.88,指前因子为4.70×104 s-1; M2体系的固化峰温升高,表观活化能、反应级数和指前因子分别提高至60.77 kJ·mol-1、0.89、1.07×105 s-1,M1与M2体系反应机理函数仍遵循n级反应模型f(α)=(1-α)n,方程中的指数n有所变化。  相似文献   

2.
吴兴宇  崔庆忠  徐军 《含能材料》2016,24(11):1097-1101
为了解决工程应用中遇到的固化终点问题,采用等温与非等温差示扫描量热法(DSC法),通过模拟n级反应动力学模型,并根据Kissinger法、Crane法研究了高聚物粘结炸药(PBX)用端羟基聚丁二烯(HTPB)型粘结体系的固化反应动力学。结果表明,HTPB/TDI粘结体系固化反应的表观活化能为54.61kJ·mol~(-1),反应级数为0.87,指前因子为192.80s~(-1),固化反应热Hu为482.87J·g~(-1)。该体系的固化反应过程中存在自催化现象。加入二月桂酸二丁基锡(T12)催化剂后,粘结体系的固化反应速率增大、反应温度降低。拟合出了固化温度与固化时间之间的函数关系,当固化温度取60℃时,求得固化时间约为3.91天,与实际工程应用中的4~6天相符。  相似文献   

3.
为了解不同催化剂[二月桂酸二丁基锡(DBTDL)、乙酰丙酮铁(Fe AA)、辛酸亚锡(TECH)、三亚乙烯二胺(DABCO)、三苯基铋(TPB)、纳米氧化锌(nano-ZnO)]条件下HTPB/IPDI黏结剂体系的固化过程,采用黏度法研究了45℃时,不同催化剂作用下,端羟基聚丁二烯(HTPB)/异佛尔酮二异氰酸酯(IPDI)体系的黏度-时间关系,并探讨了固化反应速率的变化。结果表明,45℃时,无催化剂和不同催化剂作用下HTPB/IPDI体系的流变反应速率常数分别为:k_(blank)=0.002,k_(DBTDL)=0.045,k_(FeAA)=0.0439,k_(TECH)=0.0335,k_(DABCO)=0.0051,k_(TPB)=0.0036,k_(nano-ZnO)=0.0034。不同催化剂对HTPB/IPDI体系固化反应速率常数的影响效果为:DBTDLFe AATECHDABCOTPBnano-ZnO。在HTPB/IPDI体系中,使用DBTDL,Fe AA,TECH,DABCO,TPB,nano-ZnO作为催化剂时,黏结剂体系的适用期分别为0.3,0.7,1.9,6.7,16,18 h。通过固化过程中浆料适用期和反应速率常数k的变化情况分析,认为TPB更适合作为HTPB/IPDI体系的固化催化剂。黏度对数随时间的增长趋势均呈现出前期快后期慢,向图线右下方偏离的两阶段现象。造成这一现象的主要原因是由于IPDI中NCO基团反应活性的明显差异导致:IPDI中的伯NCO基受到环己烷环和甲基的位阻效应,其反应活性明显低于环上的仲NCO基的反应活性。  相似文献   

4.
采用傅里叶变换红外(FT-IR)光谱法研究了二聚脂肪酸二异氰酸酯(DDI)/端羟基聚丁二烯(HTPB)体系的固化反应动力学,并与异佛尔酮二异氰酸酯(IPDI)/HTPB体系进行了比较。初步探索了DDI在HTPB推进剂中的应用。结果表明,DDI/HTPB体系的固化反应为二级反应,表观活化能为37.02 k J·mol-1,相比IPDI/HTPB体系降低了3.5 k J·mol-1,说明DDI的反应活性稍高于IPDI,反应活性适中,可作为低毒固化剂应用于HTPB推进剂中。DDI/HTPB体系推进剂具有较好的常温力学性能,抗拉强度为0.85 MPa时,最大伸长率为44.1%,可基本满足推进剂的常温力学性能要求。  相似文献   

5.
HTPB在高应变率斜波加载下的动力学响应   总被引:1,自引:0,他引:1  
利用磁驱动斜波压缩加载实验技术,开展了以甲苯二异氰酸酯(TDI)为固化剂的端羟基聚丁二烯(HTPB)样品在斜波加载下的动力学响应实验研究,实验峰值压力1.2 GPa。实验利用激光干涉测速技术获得了三种不同厚度的HTPB样品在斜波压缩加载下的速度响应曲线。对实验结果进行Lagrange数据分析处理,得到了HTPB样品的声速-粒子速度曲线和应力-比容关系。基于该应力-比容关系和实验获得的加载压力历史曲线,对斜波压缩实验进行了一维流体动力学模拟计算验证,模拟计算很好地再现了HTPB样品在斜波压缩加载下的动力学响应实验结果。研究结果显示,0~1.2 GPa压力范围内,HTPB样品的拉格朗日声速表现为线性行为,实验的应变率为2×10~5~1×10~6s~(-1),随着样品厚度增加,加载应变率随之增加,实验结果未见明显应变率效应,与文献冲击加载实验结论一致。  相似文献   

6.
DSC-FTIR联用研究HTPB/AP和HTPB/AP/Al体系的热分解   总被引:3,自引:2,他引:3  
采用高压差示扫描量热(PDSC)、热重(TG-DTG)以及热红联用(DSC-FTIR)技术研究了HTPB/AP复合体系热分解及压力和铝粉对该体系的影响。结果表明,端羟基聚丁二烯(HTPB)包覆去活作用推迟了AP的热分解过程,但AP加速了HTPB的分解。增大压力和加入铝粉均能加速HTPB/AP复合体系的热分解过程,燃速也因此而提高。同时增大压力也使HTPB分解放热产生多峰现象,而铝粉会抑制该现象。此外,AP还使HTPB发生“后固化”过程,随着压力的增大,该过程的固化热也增大。  相似文献   

7.
石蜡/HTPB燃料的力学性能   总被引:1,自引:0,他引:1  
王印  王飞  胡松启  刘林林  刘辉 《含能材料》2019,27(5):398-403
为了研究端羟基聚丁二烯(HTPB)体系质量分数以及温度对石蜡/HTPB燃料力学性能的影响,制备了7种不同配方石蜡/HTPB拉伸试件,并使用万能材料试验机以10 mm·min~(-1)拉伸速率进行了单轴拉伸实验,分析了燃料的最大抗拉强度、断裂伸长率和初始弹性模量变化规律。结果表明,随着HTPB体系质量分数增加,燃料的断裂伸长率增大,而最大抗拉强度和初始弹性模量皆减小;当环境温度较高(接近石蜡熔点58℃)时,燃料的最大抗拉强度和初始弹性模量皆随着HTPB质量分数增加而增大;燃料的最大抗拉强度随温度降低而逐渐增大,其中当温度由20℃降低至-40℃时,H20燃料最大抗拉强度由1.189 MPa升高至2.150 MPa;以HTPB体系为基体、石蜡为填料的石蜡/HTPB燃料,在其基体与填料的界面上存在相互阻滞作用力,可提高燃料的力学性能。  相似文献   

8.
含硼富燃料推进剂具有较高的质量热值和体积热值,是固体火箭冲压发动机较理想的燃料之一,而无定形硼与黏合剂中的羟基可发生反应,导致推进剂药浆表观黏度增大快、药浆适用期缩短等问题。计算了分别以端羟基聚丁二烯(HTPB)、3,3?二叠氮甲基氧丁环?四氢呋喃共聚醚(PBT)和聚叠氮缩水甘油醚(GAP)为粘合剂的含硼推进剂的理论体积热值,并采用双螺杆转矩流变仪和红外光谱研究了B/HTPB、B/PBT和B/GAP体系在高剪切速率混合过程中的流变和红外特性,分析了硼粉表面酸性杂质与粘合剂端羟基的反应活性。结果表明,经过合理配方设计,B/PBT/AP和B/GAP/AP的质量比为50∶20∶30时的体积热值均超过64.00 MJ·~(-3),大于B/HTPB/AP体系的体积热值(61.08 MJ·dm~(-3))。在剪切速率为355.56 s~(-1)、55℃条件下,含25%硼的B/HTPB体系表观黏度快速增加到260 Pa·s,混合110 min发生凝胶现象;含40%硼的B/PBT体系混合7 h黏度仅从3.63 Pa·s上升到10 Pa·s;含55%硼的B/GAP体系混合7 h黏度由5.96 Pa·s下降到0.33 Pa·s。B/HTPB混合体系红外光谱B—O振动吸收峰随着混合时间的增加而逐渐增强,C—O(伯醇)振动吸收峰随着混合时间的增加而逐渐减弱,而B/PBT和B/GAP体系混合420 min后红外光谱B—O振动吸收峰和C—O(伯醇、仲醇)振动吸收峰几乎没有变化。PBT和GAP端羟基与硼粉酸性杂质的反应活性比HTPB的端羟基的活性低很多,这有利于改善含硼推进剂药浆的工艺性能。  相似文献   

9.
HTPB推进剂组分溶度参数的分子模拟研究   总被引:4,自引:3,他引:4  
采用无定形动力学(amorphous cell dynamics,ACD)方法、Synthia方法和Blend方法,对端羟基聚丁二烯(HTPB)粘合剂及其常用的增塑剂、固化剂组分的溶度参数进行了模拟计算,对组分间的相溶性进行了判断.结果表明: ACD方法可以定性的模拟组分的溶度参数,Synthia方法则能够定量模拟组分的溶度参数,Blend方法可以定性直观展示组份间的相溶性及温度、摩尔含量的影响;几种方法模拟结论与实验基本吻合.常用的增塑剂满足HTPB体系相溶性要求,固化剂异佛尔酮二异氰酸酯(IPDI)、氮丙啶三(-2甲基氮丙啶-1)氧化磷(MAPO)与HTPB相溶性好于甲苯二异氰酸酯(TDI)及六次甲基二异氰酸酯(HDI),相溶性对固化效果有一定影响.计算了几种含能增塑剂与HTPB的相溶性,结果不太理想.  相似文献   

10.
可浇注固化PBX类含铝炸药低易损性研究   总被引:1,自引:2,他引:1  
采用真空振动浇注-固化技术,制得了几种以聚合物弹性体端羟基聚丁二烯(HTPB)为粘结剂,以黑索金(RDX)为主体炸药的含铝炸药。结果表明:用硝基胍(NQ)或3-硝基-1,2,4-三唑-5-酮(NTO)代替部分RDX,炸药的撞击感度明显降低,其枪击、苏珊实验反应等级较低。这种低易损性的PBX类含铝炸药适用于一些高性能武器战斗部装药。  相似文献   

11.
基于丁羟四组元推进剂配方,考察了不同表面形貌的铝(Al)粉对端羟基聚丁二烯(HTPB)推进剂燃速特性的影响,通过扫描电镜(SEM)、激光粒度分布仪分别观察了两种粒度范围在5~10μm的Al粉表面形貌,采用水下声发射法测试了含不同Al粉的HTPB推进剂的燃速,并计算了燃速压强指数。结果表明,Al粉表面形貌可区分为表面附着铝斑粒和表面光滑两种,两种形貌都对HTPB推进剂的燃速特性具有一定的影响。低压段(3~5 MPa),Al粉表面附着铝斑粒时,HTPB推进剂的燃速增幅为1.33 mm·s~(-1),压强指数为0.36;Al粉表面光滑时,HTPB推进剂的燃速增幅为1.29 mm·s~(-1),压强指数为0.34。高压段(12~20 M Pa),Al粉表面附着铝斑粒时,HTPB推进剂的燃速增幅为4.47 mm·s~(-1),压强指数为0.67;Al粉表面光滑时,HTPB推进剂的燃速增幅为2.48 mm·s~(-1),压强指数为0.40。  相似文献   

12.
三苯基铋对高燃速丁羟推进剂的催化固化作用研究   总被引:1,自引:1,他引:1  
鲁国林  夏强  杜娟 《含能材料》1999,7(2):60-62
研究了三苯基铋(TPB)对高燃速丁羟推进剂的催化固化作用。实验结果表明,TPB可降低该推进剂的固化温度,缩短固化时间,而且对其加工性能和力学性能都无副面影响,同时还发现TPB的最佳剂量是推进剂总量的0.006% ̄0.05%,在50℃固化时间为7天。  相似文献   

13.
为研究端羟基聚丁二烯(hydroxyl-terminated polybutadiene,HTPB)基浇注PBX炸药的固化反应特性确定其固化工艺参数,采用非等温DSC法研究HTPB基浇注PBX炸药粘接剂体系固化反应动力学.分别测试升温速率为5、10、15、20 K/min时的DSC数据,得出固化反应动力学方程,计算不同温度下的反应速率常数,绘制固化速率(dα/dt)~固化度(α)关系曲线,并给出常用HTPB基浇注固化炸药的固化温度范围.结果表明:相同固化度条件下,升温速率越大,固化反应速率越大,当固化度达到0.5时,固化反应速率达到最大值,此后逐渐降低,直至为零.  相似文献   

14.
为评价端羟基聚丁二烯(HTPB)与增塑剂相容性的优劣,采用分子动力学(MD)模拟方法对纯HTPB、增塑剂癸二酸二辛酯(DOS)、己二酸二辛酯(DOA)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二辛酯(DOP)及HTPB与增塑剂组成的共混物的密度、结合能和径向分布函数等进行了计算。结果表明:比较纯物质溶度参数差值(Δδ)的大小,共混物密度增加值,结合能及分子间径向分布函数值大小均可以得出增塑剂相容性优劣次序为HTPB/DOSHTPB/DOAHTPB/DOPHTPB/DBP。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号