共查询到4条相似文献,搜索用时 0 毫秒
1.
One of the problems faced in turning processes is the elastic deformation of the workpiece due to the cutting forces resulting in the actual depth of cut being different than the desirable one. In this paper, a cutting mechanism is described suggesting that the above problem results in an over-dimensioned part. Consequently, the problem of determining the workpiece elastic deflection is addressed from two different points of view. The first approach is based on solving the analytical equations of the elastic line, in discretized segments of the workpiece, by considering a stored modal energy formulation due to the cutting forces. Given the mechanical properties of the workpiece material, the geometry of the final part and the cutting force values, this numerical method can predict the elastic deflection. The whole approach is implemented through a Microsoft Excel© workbook. The second approach involves the use of artificial neural networks (ANNs) in order to develop a model that can predict the dimensional deviation of the final part by correlating the cutting parameters and certain workpiece geometrical characteristics with the deviations of the depth of cut. These deviations are calculated with reference to final diameter values measured with precision micrometers or on a CMM. The verification of the numerical method and the development of the ANN model were based on data gathered from turning experiments conducted on a CNC lathe. The results support the proposed cutting mechanism. The numerical method qualitatively agrees with the experimental data while the ANN model is accurate and consistent in its predictions. 相似文献
2.
Model reduction is a necessary procedure for simulating large elastic systems, which are mostly modeled by the Finite Element Method (FEM). In order to reduce the system’s large dimension, various techniques have been developed during the last decades, many of which share some common characteristics (Guyan, Dynamic, CMS, IRS, SEREP). A fact remains that many reduction approaches do not succeed in reducing the system’s dimension without damaging the dynamical properties of the model. The mathematical field of control theory offers alternative reduction methods, which can be applied to second order Ordinary Differential Equations (ODEs), derived by the FE-discretization of large elastic Multi Body Systems (MBS), e.g., Krylov subspace method or balanced truncation. In this paper, some of these methods are applied to the elastic piston rod. The validity of the reduced models is checked by applying Modal Correlation Criteria (MCC), since only the eigenfrequency comparison is not sufficient. Diagonal Perturbation is proposed as an efficient method for iteratively solving ill-conditioned large sparse linear systems (A x=b, A: ill-conditioned) when direct methods fail due to memory capacity problems. This is the case of FE-discretized systems, when tolerance failure occurs during the discretization procedure. 相似文献
3.
4.
Economic Load Dispatch (ELD) is an important and difficult optimization problem in power system planning. This article aims at addressing two practically important issues related to ELD optimization: (1) analyzing the ELD problem from the perspective of evolutionary optimization; (2) developing effective algorithms for ELD problems of large scale. The first issue is addressed by investigating the fitness landscape of ELD problems with the purpose of estimating the expected performance of different approaches. To address the second issue, a new algorithm named “Estimation of Distribution and Differential Evolution Cooperation” (ED-DE) is proposed, which is a serial hybrid of two effective evolutionary computation (EC) techniques: estimation of distribution and differential evolution. The advantages of ED-DE over the previous ELD optimization algorithms are experimentally testified on ELD problems with the number of generators scaling from 10 to 160. The best solution records of classical 13 and 40-generator ELD problems with valve points, and the best solution records of 10, 20, 40, 80 and 160-generator ELD problems with both valve points and multiple fuels are updated in this work. To further evaluate the efficiency and effectiveness of ED-DE, we also compare it with other state-of-the-art evolutionary algorithms (EAs) on typical function optimization tasks. 相似文献