首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four-switch buck–boost (FSBB) converter features low-voltage stress across the power switches and positive output voltage. They have two active power switches and two synchronous rectifiers, so two freedoms, i.e., the duty cycles of the two active switches, are available to regulate the output voltage. This paper proposes a two-edge modulation (TEM), in which the two active switches are trailing-edge and leading-edge modulated, respectively. Thus, the inductor current ripple can be reduced. Furthermore, a 3-mode TEM is derived to reduce the root-mean-square value of the inductor current to reduce the conduction loss. The line range is divided into three regions, and FSBB operates at boost, buck–boost, and buck modes in the lower, medium, and higher input voltage regions, respectively. At buck and boost modes, only two switches are high-frequency switched, so that the total switching loss is reduced. In the buck–boost mode, the inductor current ripple is very low compared with other two modes. Hence, the switching frequency is lowered to reduce the switching loss. The 3-mode TEM can achieve high efficiency over the line range, which is verified by a 48-V (36–75 V) input, 48-V @ 6.25-A output prototype. The measured efficiency is higher than 96.5% over the line range and the efficiency at the nominal input voltage is 97.8%.   相似文献   

2.
The three-level ZVS-PWM DC-to-DC converter   总被引:5,自引:0,他引:5  
A novel high-frequency DC-to-DC power converter for high voltage and high power is introduced which features zero voltage switching (ZVS), operation at constant frequency, regulation by pulse width modulation (PWM), and low RMS current stress upon power switches. Its greatest attribute, in comparison with the full-bridge (FB-ZVS-PWM) converter, is that the voltage across the switches is half of the input voltage, This property is achieved due to the use of a three-level leg in place of the conventional two-switch leg. Operation, analysis, design procedure and example, and simulation are presented. A prototype operating at 100 kHz, rated at 600 V input voltage, and 1.5 kW output power and 25 A output current has been fabricated and successfully tested in the laboratory. The measured efficiency at full load was 93%  相似文献   

3.
This paper presents a new parallel three-level soft switching pulse-width modulation (PWM) converter. The proposed converter has two circuit cells operated by the interleaved PWM modulation. Thus, the ripple currents at input and output sides are reduced. Each circuit cell has two three-level zero voltage switching circuits sharing the same power switches. Therefore, the current and power rating of the secondary side components are reduced. Current double rectifier topology is selected on the secondary side to decrease output ripple current. The main advantages of the proposed converter are soft switching of power switches, low ripple current on the output side and low-voltage rating of power switches for medium-power applications. Finally, the performance of the proposed converter is verified by experiments with 1 kW prototype circuit.  相似文献   

4.
This paper presents asymmetrical pulse-width-modulated (APWM) DC/DC resonant converter topologies that exhibit near-zero switching losses while operating at constant and very high frequencies. The converters include a bridged chopper to convert the DC input voltage to a high-frequency unidirectional AC voltage, which in turn is fed to a high-frequency transformer through a resonant circuit. The bridged chopper has two switches that alternately conduct. The duty cycles of the conduction of the switches are complementary with one another and are varied to control the output voltage. Three resonant circuit configurations suitable for this type of control are presented. Frequency domain analysis of the converter is given, and performance characteristics are presented. Experimental results for a 48-5 V, 30 W converter show an efficiency of 88% at a constant operating frequency of 1 MHz  相似文献   

5.
This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.  相似文献   

6.
Unity power factor zero-voltage-switched (ZVS) AC-to-DC power converters with an active filter are proposed. The line voltage is supplied to AC-to-DC power converters through a rectifier circuit with an input filter, to reduce high-frequency ripple components. The line current is almost synchronized to the line voltage, due to the low impedance of the input filter. Forward ZVS multiresonant power converters (ZVS-MRCs) are utilized for high-frequency operation and lossless switching. An active filter is introduced to minimize the twice line-frequency ripple component of the output voltage without large-size passive filters. Experimental results show that the proposed scheme gives good steady-state performances of the AC-to-DC power converters  相似文献   

7.
This paper presents a new single-stage three-level resonant power factor correction ac-dc converter suitable for high power applications (in the order of multiple kilowatts) with a universal input voltage range (90–265 Vrms). The proposed topology integrates the boost input power factor preregulator with a half-bridge three-level resonant dc-dc converter. The converter operation is controlled by means of a combination of phase-shift and variable frequency control. The phase-shift between the switch gate pulses is used to provide the required input current shaping and to regulate the dc-bus voltage to a set reference value for all loading conditions, whereas, variable frequency control is used to tightly regulate the output voltage. An auxiliary circuit is used in order to balance the voltage across the two dc-bus capacitors. Zero voltage switching (ZVS) is also achieved for a wide range of loading and input voltage by having a lagging resonant current in addition to the flowing of the boost inductor current through the body diodes of the upper pair of switches in the free wheeling mode. The resulting circuit, therefore, has high conversion efficiency and lower component stresses making it suitable for high power, wide input voltage range applications. The effectiveness of the proposed converter is verified by analysis, simulation, and experimental results.   相似文献   

8.
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.  相似文献   

9.
This paper develops and studies a three-level zero-voltage turn-on converter for providing auxiliary power system in a DC light rail vehicle. The proposed converter includes a three-level circuit and a half-bridge circuit sharing the same power switches on the high voltage side in order to reduce switch counts and distribute total power into two circuits. The Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) with a low voltage rating and a turn-on resistance are adopted in the developed converter in order to decrease conduction losses on power switches. On the secondary side, two inductors and four rectifier diodes are employed to reduce output ripple current and transformer secondary winding turns. A duty cycle control based on the phase-shift pulse-width modulation is used to regulate the output voltage and achieve the wide range of zero-voltage turn-on. Experimental results with a prototype with a 760 V input and a 48V/30A output are provided to verify the feasibility and effectiveness of the developed converter.  相似文献   

10.
A three-phase pulse-width-modulated (PWM) half-controlled rectifier using a novel PWM control strategy whereby the low-order harmonic content in both the input current and the output voltage is reduced is presented. The circuit operates with a unity displacement factor at its input and uses minimum power components. The PWM strategy developed can be implemented on a three-phase half-controlled rectifier bridge with only three controlled switches to obtain PWM controlled rectification. Although the circuit operation is explained with force-commutated SCR switches, the basic controlled PWM operation is valid for any type of switch control. The circuit has wide applications ranging from rectifiers to battery chargers to motor drives. Even if an input current filter is desired, its size will be small due to the PWM pattern used  相似文献   

11.
A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal–oxide–semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.  相似文献   

12.
In this paper, a new single-phase switching mode rectifier (SMR) for three-level pulse width modulation (PWM) is proposed to achieve high input power factor, low current harmonics, low total harmonic distortion (THD) and simple control scheme. The mains circuit of the proposed SMR consists of six power switches, one boost inductor, and two DC capacitors. The control algorithm is based on a look-up table. There are five control signals in the input of the look-up table. These control signals are used to control the power flow of the adopted rectifier, compensate the capacitor voltages for the balance problem, draw a sinusoidal line current with nearly unity power factor, and generate a three-level PWM pattern on the AC side of adopted rectifier. The advantages of using three-level PWM scheme compared with two-level PWM scheme are using low voltage stress of power switches, decreasing input current harmonics, and reducing the conduction losses. The performances of the proposed multilevel SMR are measured and shown in this paper. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental results from a laboratory prototype  相似文献   

13.
This paper proposes a zero-voltage and zero-current-switching pulsewidth modulation hybrid full-bridge three-level (ZVZCS PWM H-FB TL) converter, which has a TL leg and a two-level leg. The voltage stress of the switches of the TL leg is half of the input voltage, and the switches can realize ZVS, so MOSFETs can be adopted; the voltage stress of the switches of the two-level leg is the input voltage, and the switches can realize ZCS, so IGBT can be adopted. The secondary rectified voltage is a TL waveform having lower high-frequency content compared with that of the traditional FB converters, which leads to the reduction of the output filter inductance. The input current of the converter has quite little ripple, so the input filter can also be significantly reduced. The operation principle of the proposed converter is analyzed and verified by the experimental results. Several ZVZCS PWM H-FB TL converters are also proposed in this paper.  相似文献   

14.
A novel circuit-topology family of the current-mode AC/AC converter with high-frequency AC link, based on a Flyback converter, is proposed. These circuit topologies, which can transfer one unregulated sinusoidal voltage with high total harmonic distortion (THD) into another regulated constant-frequency sinusoidal voltage with low THD, are composed of input cycloconverter, high-frequency storage transformer, and output cycloconverter. The circuit-topology family includes single four-quadrant power switch mode, push-pull mode, half-bridge mode, and full-bridge mode circuits. The single four-quadrant power switch mode and push-pull mode converters are suitable for low input voltage fields, but the half-bridge mode and full-bridge mode converters are suitable for high input voltage fields. The operational mode, steady principle, and transient voltage feedback control strategy of the kind of converter are investigated. The output characteristic curve, its relation to internal resistance, and the design criteria for the key circuit parameters are given. The theoretical analysis and the test result of the 500 VA 220 V 15% 50 HzAC/220 V 50 HzAC prototype have shown that the converters have advantages such as high-frequency galvanic isolation, simple topology, two-stage power conversion [low frequency alternating current (LFAC)/high frequency alternating current (HFAC)/LFAC], bidirectional power flow, high efficiency, high power density, low THD of the output voltage, strong adaptability to various loads, higher line power factor, low audio noise, etc.  相似文献   

15.
A high-performance and low-cost single-switch current-fed energy recovery circuit (ERC) for an alternating current (ac) plasma display panel (PDF) is proposed. Since it is composed of only one power switch compared with the conventional circuit consisting of four power switches and two large energy recovery capacitors, it features a much simpler structure and lower cost. Furthermore, since all power switches can be switched under soft-switching operation, the proposed circuit has desirable merits such as an increased reliability, and low switching loss. Especially, there are no serious voltage notches across the PDP with the aid of gas discharge current compensation, which can greatly reduce the current stress of all inverter switches, and provide those switches with the turn on timing margin. To confirm the validity of the proposed circuit, its operation and performance were verified on a prototype for 7-in test PDP.  相似文献   

16.
ABSTRACT

An interleaved frequency control soft switching converter is studied for solar power or fuel cell power applications. The proposed circuit topology contains two parallel current-fed circuit cells with interleaved pulse-width modulation operation. Thus, the ripple currents at input and output terminals are decreased. In each circuit cell, the proposed current-fed dc-dc converter includes boost circuit and resonant circuit to achieve current ripple-free on low voltage side and less switching losses on active devices. The boost circuit and the resonant circuit have same active devices to decrease power switches. Due to the resonant behaviour, the reverse recovery current loss on secondary diodes is removed. The voltage doubler circuit topology is accomplished on secondary-side to reduce diode counts and conduction loss. The performance and effectiveness of the developed interleaved PWM current-fed converter are verified and confirmed by experiments.  相似文献   

17.
A new video-speed current-mode CMOS sample-and-hold IC has been developed. It operates with a supply voltage as low as 1.5 V, a signal-to-noise ratio (S/N) of 57 dB and 54 dB with a 1-MHz input signal at clock frequencies of 20 and 30 MHz, and a power dissipation of 2.3 mW. It consists of current-mirror circuits with the node voltages at the input and the output terminals which are kept constant in all phases of the input signal by the use of low-voltage operational amplifiers; this reduces the signal current dependency. The low-voltage operational amplifier consists of a MOS transistor and a constant current source in a common-gate amplifier configuration. Only two analog switches in differential form were used to construct the differential sample-and-hold circuit. This minimizes the error caused by the switch feed through, and thus high accuracy can be realized. Since there is no analog switch in the input path, it is possible to convert the input signal voltage to a current by simply connecting an external resistor. The circuit was fabricated using standard 0.6-μm MOS devices with normal threshold voltages (Vth) of +0.7 V (nMOS) and -0.7 V (pMOS)  相似文献   

18.
A new control scheme for a single-phase bridge rectifier with three-level pulsewidth modulation is proposed to achieve high power factor and low current distortion. The main circuit consists of a diode-bridge rectifier, a boost inductor, two AC power switches, and two capacitors. According to the proposed control scheme based on a voltage comparator and hysteresis current control technique, the output capacitor voltages are balanced and the line current will follow the supply current command. The supply current command is derived from a DC-link voltage regulator and an output power estimator. The major advantage of using a three-level rectifier is that the blocking voltage of each AC power device is clamping to half of the DC-link voltage and the generated harmonics of the three-level rectifier are less than those of the conventional two-level rectifier. There are five voltage levels (0, ±VDC/2, ±VDC) on the AC side of the diode rectifier. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental tests  相似文献   

19.
This article proposes a new structure of voltage multiplier for portable pulsed power applications. In this configuration, which is based on capacitor-diode voltage multiplier, the capacitors are charged by low AC input voltage and discharge through the load in series during pulse generation mode. The proposed topology is achieved by integrating of solid-state switches with conventional voltage multiplier, which can increase the low input voltage step by step and generate high-voltage high-frequency pulsed power across the load. After some discussion, simulations and experimental results are provided to verify the effectiveness of the proposed topology.  相似文献   

20.
Zero-voltage-switching PWM hybrid full-bridge three-level converter   总被引:4,自引:0,他引:4  
This paper proposes a zero-voltage-switching (ZVS) pulse-width modulation (PWM) hybrid full-bridge three-level converter, which has a three-level leg and a two-level leg. The switches of the three-level leg sustain only the half of the input voltage, and they can realize ZVS in a wide load range. The switches of the two-level leg sustain the input voltage, and they can realize ZVS with the use of the resonant inductance. The secondary rectified voltage is a three-level waveform having lower high-frequency content compared with that of the traditional full-bridge converters, which can reduce the output filter, and as a result, the dynamic response of the converter is improved. The voltage stress of the rectifier diode is reduced also. The input current of the converter has quite little ripple, so the input filter can also be significantly reduced. The operation principle of the proposed converter is analyzed and verified by the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号