首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many analyses have been completed on the operating characteristics of fuel processors as a function of fuel usage, power density and specific power as related to efficiency. In addition, it is widely recognized that depending on the fuel type, fuel processors will either be net producers or consumers of water. This has led to theoretical simulations to determine the maximum efficiency that can be achieved given a processor's overall water balance. Moreover, the effect of water for steam and autothermal reformers (ATR) has been investigated to gain an understanding of how it will be influenced given the net results of the system water balance. However, little attention has been given to the effect of water on the reactors downstream of the reformer. Furthermore, a simulation that incorporates the actual, not only theoretical, operation of the reactors coupled with the water balance issues has not been investigated until now. This paper will report on the effect of water on the operation of the CO clean-up train, including water–gas-shift (WGS) and preferential oxidation (PROX) reactors, and its influence on the overall efficiency of the processor system as compared to theoretical thermodynamic calculations. The comparison illustrates that a purely thermodynamic simulation can lead to a less efficient system design than could otherwise be possible once actual reactor performance is included.  相似文献   

2.
J.E.J. Staggs 《Polymer》2007,48(13):3868-3876
A widely accepted view of the thermal degradation of polymers such as PMMA is that an initiation reaction produces radical fragments that undergo rapid depropagation and are also converted back to molecules by a termination reaction. This mechanism is applied to a population of linear molecules and radicals and the evolution of the population is modelled by appropriate discrete sets of ordinary differential equations. In particular, end-chain and random initiation reactions with first-order termination are analysed and compared with experimental data. We find on comparison with TG data for PMMA that the initiation reaction is important in dictating the qualitative behaviour of the overall rate of thermal degradation. Furthermore, the behaviour of degradation rate with initial degree of polymerisation is also investigated and interpreted within the framework of the model.  相似文献   

3.
We present theoretical and experimental studies of an active water management system for proton exchange membrane (PEM) fuel cells that uses integrated wicks and electroosmotic (EO) pumps. The wicks and EO pumps act in concert to remove problematic excess liquid water from the fuel cell. In a previous paper, we showed that this system increases maximum power density by as much as 60% when operating with low air stoichiometric ratios and a parallel channel flow field. The theoretical model we develop here accounts for several key factors specific to optimizing system performance, including the wick's hydraulic resistance, the variation of water pH, and the EO pump's electrochemical reactions. We use this model to illustrate the favorable scaling of EO pumps with fuel cells for water management. In the experimental portion of this study, we prevent flooding by applying a constant voltage to the EO pump. We experimentally analyze the relationships between applied voltage, pump performance, and fuel cell performance. Further, we identify the minimum applied pump voltage necessary to prevent flooding. This study has wide applicability as it also identifies the relationship between active water removal rate and flooding prevention.  相似文献   

4.
In this work, a three-dimensional PEM fuel cell model has been developed and is used to investigate the effects of water flooding on cell performance parameters. The presence of liquid water in the cathode gas diffusion layer (GDL) limits the flow of reactants to the cathode catalyst layer, thereby reducing the overall reaction rate and curtailing the maximum power that can be derived from the cell. To characterize the effects of water flooding on gas diffusion, effective diffusivity models that account for the tortuosity and relative water saturation of the porous fuel cell electrodes have been derived from percolation theory and coupled with the CFD model within a single phase flow skeleton. The governing equations of the overall three-dimensional PEM fuel cell model, which are a representative of the coupled CFD and percolation theory based effective diffusivity models, are then solved using the finite volume method. Parametric studies have been conducted to characterize the effects of GDL permeability, inlet humidity and diffusivity of the reactants on the various cell performance parameters such as concentration of reactants/products and cell current densities. It is determined that the GDL permeability has little or no effect on the current densities due to the diffusion dominated nature of the gas flow. However, through the incorporation of percolation theory based effective diffusivity model; a marked reduction in the cell performance is observed which closely resembles published experimental observations. This is a reasonable approximation for effects of water flooding which has been inherently used for further parametric studies.  相似文献   

5.
Polymer electrolyte fuel cell (PEFC) mounted with two strips of polyvinyl alcohol (PVA) sponge is presented and the effect of operating conditions on the cell performance is investigated. Mounting the sponge wicks is advantageous for the humidification of dry inlet air and for the removal of liquid water in the cell. It was found that dry inlet hydrogen could be internally humidified by water diffusion from the cathode to anode when operating in a counterflow mode. The results show that the relative humidity of the inlet gases could have little effect on the performance of the cell mounted with two sponge wicks under certain operating conditions. At a cell potential of 0.5 V, the current densities of the sponge-mounted PEFC operated with dry air are 5% and 31% higher than those of the conventional one without wicks operated with saturated and dry air, respectively. The molar percentage of water vapor to total water exiting the cathode (Rgas) is an important parameter to gauge the cell performance with dry gases. A very large Rgas may cause the membrane dehydration and subsequently a low cell performance.  相似文献   

6.
An iso-octane fuel processor system with three different reaction stages, autothermal reforming (ATR) reaction of iso-octane, high temperature shift (HTS) and low temperature shift (LTS) reactions, was developed for applications in a fuel cell system. Catalytic properties of the prepared Ni/Fe/MgO/Al2O3 and Pt–Ni/CeO2 or molybdenum carbide catalysts were compared to those of commercial NiO/CaO/Al2O3 and Cu/Zn/Al2O3 catalysts for ATR and LTS reaction, respectively. It was found that the prepared catalysts formulations in the fuel processor system were more active than those of the commercial catalysts. As the exit gas of iso-octane ATR over the Ni/Fe/MgO/Al2O3 catalyst was passed through Fe3O4–Cr2O3 catalyst for HTS and Mo2C or Pt–Ni/CeO2 catalyst for LTS reaction, the concentration of CO in hydrogen-rich stream was reduced to less than 2400 ppm. The results suggest that the iso-octane fuel processor system with prepared catalysts can be applied to PEMFC system when a preferential partial oxidation reaction is added to KIST iso-octane reformer system.  相似文献   

7.
This paper describes a transient model predicting PEMFC voltage response to a step change in the cooling water temperature. Its objectives are to put forward the main transport parameters and their corresponding time scales. The fuel cell is assumed isothermal with a time constant τt. The temperature variations result from the production of heat by the exothermic chemical reaction and by internal heat dissipation, and from heat transfer with the cooling circuit. The effects of temperature on fuel cell performances are taken into account through the variations in its thermodynamic voltage, in the kinetics of the half-reactions, and in the membrane ionic resistance. A dynamic and one-dimensional simulation of water transport in the membrane by electroosmotic drag and by diffusion is carried out: the relative humidity of gases varies with the cell temperature under the assumption that their specific humidity (i.e., the vapor content in the gas diffusion layers) remains unchanged.Two time constants characterize mass transfer in the membrane by water diffusion (τd) and by electroosmosis (τe). The Péclet number Pe which is equal to the ratio between τd and τe allows the comparison of the magnitude of these two transport mechanisms, both depending on current density and on the other operating conditions.The results of the model are compared to a set of experimental results obtained with a cell composed of a Nafion 115 membrane, and fed by hydrogen and pure oxygen. The average current density is 4000 A m−2. In these conditions, the smallest time constant is the one characterizing the fuel cell thermal response τt (16 s). Therefore, the fuel cell voltage response to a temperature step occurs in two stages, the first one corresponding to the thermal regime. The second stage concerns water transport in the membrane; the best fit between numerical and experimental results yields to a Péclet number of about 16, which makes electroosmosis the most significant phenomenon.  相似文献   

8.
火力发电厂水平衡测试及节水分析   总被引:1,自引:0,他引:1  
为查清全厂用水现状,确定各用水系统之间用水量的定量关系及全厂各用水系统的合理用水量,对某火力发电厂4×600 MW超临界机组的取水、用水、排水、耗水进行了测定,根据测试结果进行水平衡计算和用水状况分析,提出电厂节水和综合利用的建议.结果表明,该厂地下管网泄漏严重,并且废水回收、处理系统管理维护存在不足,理论上在现取水总...  相似文献   

9.
In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.  相似文献   

10.
A simplified, miniaturized polymer electrolyte fuel cell without gas diffusion layers was investigated under operation by neutron radiography. By visualizing liquid water, it was possible to identify limiting effects, which are directly related to the simplified construction principle. Depending on the operation conditions, undesired water accumulation either in particular micro-channels or on the cathode catalyst layer as well as drying of the anode catalyst layer was observed. As a consequence, the design of a fuel cell without gas diffusion layers must take into account these limitations visualized by neutron radiography.  相似文献   

11.
The pressure balance along the solid circulation loop of a circulating fluidized bed equipped with a solid flux regulating device has been modelled and the influence of the pressure balance on the riser behaviour has been predicted.The solid circulation loop has been divided into many sections, where the pressure drop was calculated independently: riser, cyclone, standpipe, control device and return duct. A new theoretical model, that is able to predict the pressure losses in the return path of the solid from the standpipe to the riser, has been built. A new correlation for cyclone pressure loss with very high solid loads has been found on the basis of experimental data.The pressure loss in the riser has been calculated by imposing the closure of the pressure balance, ΣΔP = 0. Once the riser pressure drop had been calculated, the holdup distribution along the riser was obtained by imposing a particular shape of the profile, according to the different fluid-dynamics regimes (fast fluidization or pneumatic transport). In the first case, an exponential decay was imposed and the bottom holdup was adjusted to fit the total pressure drop, in the second case, the height of the dense zone was instead varied.The experimental data was used to develop the sub-models for the various loop sections have been obtained in a 100 mm i.d. riser, 6 m high, CFB. The solid was made of Geldart B group alumina particles. The tests were carried out with a gas velocity that ranged between 2 and 4 m/s and a solid flux that ranged between 20 and 170 kg/m2s. A good agreement was found between the model and experimental data.  相似文献   

12.
《Ceramics International》2023,49(12):19708-19716
A low leakage rate sealant of 10 wt% ZrO2-added CaO–K2O–Na2O–BaO silicate glass for SOFC has been studied. The structure of the sealant is stable at high temperatures with leakage rates less than 10−4 sccm∙cm−1, and no crystal except for ZrO2 is found in XRD analysis after heating at 800 °C for 100 h. ZrO2 is distributed in the glass matrix and plays a supporting role in avoiding over-softening at operating temperature. Good compatibility in both oxidizing and reducing atmospheres between the sealant and SUS430 interconnect was proved by SEM at 750 °C for 100 h. A fully coupled 3D Multiphysics button SOFC is constructed for mechanical analyses. The results show that the increase of ZrO2 in the sealant will decrease the stress and displacement in the SOFC. Besides, the width of the sealant also affects the stress value and distribution. The results show that GZ10 is a competitive sealing material compared with other ZrO2-added sealants.  相似文献   

13.
In the present study, a detailed thermodynamic analysis is carried out to provide useful information for the operation of solid oxide fuel cells (SOFC) with direct internal reforming (DIR) fueled by ethanol. Equilibrium calculations are performed to find the ranges of inlet steam/ethanol (H2O/EtOH) ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1500 K. Two types of fuel cell electrolytes, i.e., oxygen-conducting, and hydrogen-conducting electrolytes, are considered. The key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum H2O/EtOH ratio for which the carbon formation is thermodynamically unfavored decreases with increasing temperature. The hydrogen-conducting electrolyte is found to be impractical for use, due to the tendency for carbon formation. With a higher extent of the electrochemical reaction of hydrogen, a higher value of the H2O/EtOH ratio is required for the hydrogen-conducting electrolyte, whereas a smaller value is required for the oxygen-conducting electrolyte. This difference is due mainly to the water formed by the electrochemical reaction at the electrodes.  相似文献   

14.
An experimental study was performed to determine the through-plane thermal conductivity of various gas diffusion layer materials and thermal contact resistance between the gas diffusion layer (GDL) materials and an electrolytic iron surface as a function of compression load and PTFE content at 70 °C. The effective thermal conductivity of commercially available SpectraCarb untreated GDL was found to vary from 0.26 to 0.7 W/(m °C) as the compression load was increased from 0.7 to 13.8 bar. The contact resistance was reduced from 2.4×10−4 m2°C/W at 0.7 bar to 0.6×10−4 m2°C/W at 13.8 bar. The PTFE coating seemed to enhance the effective thermal conductivity at low compression loads and degrade effective thermal conductivity at higher compression loads. The presence of microporous layer and PTFE on SolviCore diffusion material reduced the effective thermal conductivity and increased thermal contact resistance as compared with the pure carbon fibers. The effective thermal conductivity was measured to be 0.25 W/(m °C) and 0.52 W/(m °C) at 70 °C, respectively at 0.7 and 13.8 bar for 30%-coated SolviCore GDL with microporous layer. The corresponding thermal contact resistance reduced from 3.6×10−4 m2°C/W at 0.7 bar to 0.9×10−4 m2°C/W at 13.8 bar. All GDL materials studied showed non-linear deformation under compression loads. The thermal properties characterized should be useful to help modelers accurately predict the temperature distribution in a fuel cell.  相似文献   

15.
After PTFE treatment, a gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC) features mixed wettability, which substantially impacts liquid water transport and associated mass transport losses. A pore-network model is developed in this work to delineate the effect of GDL wettability distribution on pore-scale liquid water transport in a GDL under fuel cell operating conditions. It is found that in a mixed-wet GDL liquid water preferentially flows through connected GDL hydrophilic network, and thereby suppresses the finger-like morphology observed in a wholly hydrophobic GDL. The effect of GDL hydrophilic fraction distribution is investigated, and the existence of an optimum hydrophilic fraction that leads to the least mass transport losses is established. The need for controlled PTFE treatment is stressed, and a wettability-tailored GDL is proposed.  相似文献   

16.
Landfills constitute extremely variable and heterogeneous environments and noxious landscapes in urban areas. The risk of a non-engineered landfill is relative to its hydrolologic behavior. Natural or planted vegetation on a landfill has an important role in its interior water balance, erosion control and removal of contaminants, besides imparting aesthetic value. Water deficit and heavy metal pollution are two of the most important factors limiting plant growth and establishment in landfills. The aim of this study was to investigate the colonization status, the ability to establish and the ecophysiological efficiency of different plant species grown on a waste landfill in the Mediterranean area in order to assess their potential for restoring waste landfills. For this purpose three grass species (Festuca arundinacea, Koeleria macrantha and Cynodon dactylon) were chosen for the restoration of a landfill in North Greece. Heavy metal concentration in both soil and plant tissues was determined. Plant density, cover and composition were measured after plant establishment. Assimilation and transpiration rate, stomatal conductance, and leaf water potential were seasonally measured and correlated with available soil water which was calculated using a commercial program for simulating the water balance in a landfill. The results indicate that C. dactylon appears to be ecophysiologically more efficient even though F. also seems able to participate in a forage plant cover at the landfill.  相似文献   

17.
Although cathode catalyst layers (CCLs) are at the center of water management in polymer electrolyte fuel cells (PEFCs), the understanding of water movement in CCLs and their roll on fuel cell performance is still limited. In this present study, several CCLs with controlled microstructure, including main pore size, pore volume and porosity ranging from 30 to 70 nm, 0.443 to 0.962 cm3/gPt/C, and 45.4 to 64.4%, respectively, were prepared by changing the hot-pressing pressure in a decal process, and their water management ability and cell performance were evaluated. The electrochemical analyses reveal that, as the pore size and pore volume of CCLs increase, the diffusion resistance mainly arising from water accumulation in the pores is evidently reduced by capillary water equilibrium, which leads to better cell performance. Water balancing between accumulation and discharging in the pores also depends on the CCL pore structure, and the CCLs with greater pore sizes and larger pore volumes reveal more stable cell performance by better water management in steady state operation, even under extremely humid conditions. Based on these MEA technologies such as fabrication of CCLs, further study will be performed to understand microscopic phenomena in nano pores of CCLs by combining the experimental approach with CCL numerical modeling.  相似文献   

18.
李毅  袁永熠  廖中亮 《化工进展》2020,39(3):916-923
针对某型号高温甲醇燃料电池单电池模块,以实现精确控温、快速启动为目的进行了燃料电池热管理系统的设计、制造和测试。应用Matlab/Simulink平台开发了一种拟合简化方程的控制系统算法及其仿真计算平台,并对所设计的控制算法进行了仿真计算;同时对燃料电池内外传热介质循环回路及冷却系统换热器进行了重新设计与样件试制。完成了热管理系统单电池模块运行试验,将实测数据与仿真计算结果进行了对比分析。试验结果表明,所设计热管理系统成功将电池预热时间缩短了678s,稳定工况下冷却介质温度误差保持在±2℃以内,达到了预定的设计要求。样件试制及测试结果验证了热管理系统设计的可行性、准确性及实用性,为今后高温甲醇燃料电池热管理系统设计优化提供了理论和实际参考。  相似文献   

19.
This study presents a new method of PEMFC characterisation carried out experimentally on a self-breathing fuel cell from PaxiTech® (25 cm2 electrode surface area). First, dc and ac measurements were performed on this cell on the basis of models originally dedicated to a Gas Diffusion Cathode. Electrochemical Impedance Spectroscopy (EIS) measurements were performed to characterise the general electrical behaviour of the cell. This technique is of particular interest for improving our understanding of mass transport limitations in PEMFCs. Second, current and temperature distributions over the fuel cell area were determined. Measurements of the locally induced magnetic field and the temperature then provided an indirect evaluation of the current densities in the fuel cell. Both methods were used to determine heterogeneous current density distributions and showed that the highest current densities were close to the current collectors.  相似文献   

20.
In this work, membrane resistance measurement and water balance experiment were implemented to investigate the feasibility for a PEM fuel cell operating with dry hydrogen. The results showed that when a thin membrane was used in a cell the performance and the membrane resistance changed a little while the anode humidity changed from saturated to dry. Comparing with the anode humidity, the influence of the cathode humidity was serious on the cell performance. The water balance experiments showed that the net water transport coefficient was negative even the anode was humidified and liquid water existed not only in the cathode but also in the anode. High cathode humidity was disadvantage for the removal of water both in the anode and the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号