首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
不同污泥源条件下ASBR启动对比研究   总被引:1,自引:0,他引:1  
厌氧序批式反应器(ASBR)实际应用的关键环节在于如何实现快速启动.为了缩短ASBR的启动时间,实验研究了接种不同污泥对快速启动的影响.分别接种市政污水处理厂的二沉池剩余污泥和升流式厌氧污泥床反应器(UASB)中的厌氧污泥.以淀粉为基质,在恒温35℃条件下,逐步增加进水COD浓度和缩短水力停留时间,经过75d的培养,泥粒径分别达到了1.1mm和1.4mm,有机负荷达到5.6kg/(m3·d),COD去除率分别达到85%和90%,出水VFA浓度均小于200mg/L,且系统运行稳定,均实现了ASBR的快速启动.  相似文献   

2.
污泥接种量对UASB反应器启动的影响   总被引:1,自引:0,他引:1  
为了提高生产性UASB(上流式厌氧污泥床)反应器的启动速度,使其在较短的时间内应用于工业废水的处理,以生产性UASB反应器处理淀粉废水的启动过程为研究对象,采用不同浓度的消化污泥进行接种,重点考察了污泥接种量对反应器启动过程的影响.实验结果表明,在中温条件下,接种污泥数量偏低或偏大对反应器的快速启动均是不理想的.接种污泥量偏低缺乏了对废水处理的最基本要素——大量的厌氧微生物;接种量偏大,又增加了处理成本.因此推荐接种消化污泥量为15 kgSS/m3左右,启动时间约为2个月.这样既降低了反应器的启动费用,又在较短的时间内达到了启动目的.  相似文献   

3.
目的 研究在低温(15℃以下)条件下间歇式生物接触氧化反应器(SBCO)的启动过程.方法 在反应器中投加接种活性污泥,注入待处理污水,固定装置运行周期,通过调整进水CODCr及曝气量进行生物膜的培养.结果 在水温11.5~14℃时,2次接种污泥,培养32 d反应器成功启动.结论 低温条件下间歇式生物接触氧化反应器启动较慢,接种污泥量对启动速度有着直接影响.在低温条件下,如接种污泥量较大,反应器可在2周至3周启动成功.温度对反应器氨氮去除率影响较大,但总体仍能保持较好的出水效果.pH值在6.8~7.3之间,并不是微生物生存最适pH范围,但对挂膜影响不明显,系统仍可成功启动.  相似文献   

4.
不同种泥对两相厌氧工艺快速启动的影响   总被引:4,自引:0,他引:4  
采用接种普通好氧污泥和缺氧污泥处理中药难降解废水并进行小试试验,考察两种污泥对两相厌氧工艺快速启动的影响.结果表明:采用本中心开发的专利高效两相厌氧反应器,好氧污泥和缺氧污泥的启动几乎可以获得相同的启动速度,30 d以内就可实现快速启动;好氧污泥启动承受的负荷更高,抗冲击负荷能力更强(产甲烷相反应器在容积负荷为7~9 kgCOD/(m3.d)时,两相系统的总容积负荷为6~8 kgCOD/(m3.d)时,去除率都在90%以上);扫描电镜照片表明好氧污泥启动的种群更丰富,生态结构更合理.建议处理高浓度难降解废水时以好氧污泥接种,既能够经济地实现快速启动又能在高负荷下稳定运行.  相似文献   

5.
目的研究多级厌氧、好氧、缺氧交替SBR新型反应器进行脱氮除磷的启动过程.方法采用接种法培养活性污泥,注入待处理污水,固定装置运行周期,通过调整厌氧、好氧、缺氧时间分配和交替次数对SBR工艺脱氮除磷效果进行研究.结果SBR工艺的运行参数为厌氧(含进水)1.5 h→好氧2 h→缺氧1.5 h→好氧0.5 h→缺氧1 h→好氧0.5 h→静置沉淀1 h,好氧的总时间为3 h,缩短了2 h,节约了40%的曝气量.对COD、TN、TP的平均去除率均已高达97.34%、90.78%、92.14%.污泥容积指数SVI由接种污泥的198.1降至最终污泥培养驯化第Ⅳ阶段的71.结论温度控制在(23±2)℃条件下,采用接种法培养驯化活性污泥2个月就能完成污泥培养驯化,满足污水处理要求.  相似文献   

6.
两相厌氧工艺好氧预挂膜快速启动试验研究   总被引:3,自引:1,他引:2  
为克服两相厌氧反应器启动时间长的缺点,采用填料好氧预挂膜(10 h)的方法来加快两相厌氧反应器的启动速度,小试试验结果表明:以高浓度难降解中药废水为底物、好氧污泥为种泥,13 d就完成快速启动.这个启动速度比接种普通污泥快4~6倍(8~12周),与接种成熟厌氧颗粒污泥持平(一般2~3周,个别的一周之内快速启动).启动后产酸相(CSTR)出水VFA含量逐步提高,pH在4.35~4.71;产甲烷相(UAS-BAF)出水VFA在启动10 d后下降至500 mg/L以下,pH在7.21~7.85;UASBAF出水比填料区前出水的各项挥发酸指标都低,这证明填料的好氧预挂膜效果良好,从而加快了反应器的启动速度.研究还提出了“好氧活性污泥培养———污泥沉淀浓缩———喷淋预挂膜”的填料好氧预挂膜技术方案,该方法有助于两相厌氧工艺在中国废水处理领域的实际应用.  相似文献   

7.
污泥浓度是膜生物反应器(MBR)设计运行中的重要参数,对反应器的运行效果有着较大的影响.通过缩短水力停留时间(HRT)、延长污泥龄(SRT),考察了MBR中污泥的增长规律,不同污泥浓度下进、出水CODCr的变化情况,容积负荷Nv与污泥负荷Ns对CODCr去除率的影响.结果表明:MBR反应器中属于混合液悬浮固体(MLSS)的污泥浓度随着水力停留时间(HRT)的缩短、污泥龄(SRT)的延长不断增长,但污泥活性有所降低;污泥表观产率Yobs随着时间的延长有所降低;反应器的容积负荷随着HRT的减少而增加,污泥负荷始终处于一个较低的水平;随着污泥负荷和容积负荷的增加,CODCr的去除率始终保持在90%以上,说明反应器具有良好的抗冲击负荷能力.  相似文献   

8.
研究了常温下EGSB反应器的启动及运行规律。实验包括启动运行和稳定运行阶段。实验结果表明,常温条件下采用好氧污泥接种的EGSB反应器可以成功启动,但是反应器的启动周期相对较长;反应器耐受温度变化能力较强,6℃范围内的温度突变对反应器影响很小;反应器抗有机容积负荷冲击能力较强,其有机容积负荷可以在较短时间内由6.74 kg.m-3.d-1提升为13.5 kg.m-3.d-1;加大液体升流速度可提高EGSB反应器的处理能力,但液体升流速度不宜超过2.5 m.h-1;启动阶段中,应尽快提高反应器的有机容积负荷,以利于反应器处理效率的上升。污泥颗粒化从底部开始,自下而上完成;污泥的沉降性能指标SVI值经历了较低-上升-下降-迅速下降的几个阶段,污泥沉降性能的改善与污泥的颗粒化进程一致。  相似文献   

9.
UASB反应器处理青霉素废水启动特性的研究   总被引:1,自引:0,他引:1  
采用上流式厌氧污泥床(UASB)反应器,以高浓度青霉素废水为处理对象,研究了中温条件下UASB反应器的启动、厌氧颗粒污泥特性和废水处理效果。结果表明:接种消化污泥,水温33~35℃的条件下,采用逐步提高青霉素废水进水浓度的方式,运行80d后,可实现UASB反应器的启动。进水ρ(COD)达到4 000mg/L左右,COD去除率稳定在84%以上,容积负荷为3.36kg/(m3.d)(以COD计),产气量为5.9L/d;反应器内污泥实现颗粒化,粒径约为2mm。  相似文献   

10.
利用不同类型种泥启动生物制氢反应器的试验研究   总被引:1,自引:0,他引:1  
采用3种不同类型的污泥作为种泥,以糖蜜废水为底物,进行CSTR型生物制氢反应器的启动实验研究。结果表明,初始的微生物类型对于反应器的启动速度有着决定性的影响;在中温(35±1)℃,水力停留时间(HRT)为9 h左右,启动负荷在8~10 kgCOD/m3.d左右的条件下,好氧、兼性和厌氧污泥都可以作为厌氧发酵法生物产氢反应器启动的种泥;其中好氧泥启动需要大约35 d时间,兼性泥启动需要25 d左右,而厌氧污泥则需要50 d以上才有可能成功。从生物制氢的工程应用角度考虑,兼性污泥是反应器启动的最佳种泥,可以较大程度的缩短反应器启动时间。  相似文献   

11.
为缩短UASB工艺处理低温城市污水的启动周期,开展在原水中添加水厂生产废水强化UASB系统污泥颗粒化可行性研究,并以常规启动方式做为比较,对启动过程中系统运行特性和形成的颗粒污泥特性进行探讨。试验结果表明,在水温为15℃,初始有机负荷为0.25kgCOD/(m3.d)的条件下,采用逐步提高负荷的传统启动方式和添加生产废水的强化启动方式都能实现UASB工艺的低温启动,相应的启动周期分别为120d和95d左右。在整个启动过程中,添加生产废水启动方式对有机负荷提高适应性较强,达到4kgCOD/(m3.d)时较常规方式缩短30d,而且具有较高的COD去除效率和微生物增长速率(分别为0.029g VSS/d和0.043g VSS/d)。与常规启动方式相比,强化启动方式颗粒粒径较大,在第95d内可形成2mm粒径颗粒污泥。采用添加生产废水的启动方式能够缩短UASB工艺的启动周期并强化污泥颗粒化,提高低温城市污水的处理效率和运行稳定性。  相似文献   

12.
研究了低有机负荷废水引发的活性污泥丝状菌的膨胀,以及其对废水处理效果的影响,并通过调节废水有机负荷和运行方式来对污泥膨胀进行控制.实验结果表明,当混合液有机负荷为0.03kgCOD·(kgMLSS·d)-1,易引发丝状菌污泥膨胀.当有机负荷为0.18kgCOD·(kgMLSS·d)-1时,运行到第7天,SVI从325mL·g-1降至109mL·g-1,CODCr去除率从42.67%上升至90.03%,丝状菌污泥膨胀得到基本控制;在调节有机负荷的同时,改变运行方式,当运行至第6天时,SVI从325mL·g-1降至99mL·g-1,CODCr去除率从42.67%上升至91.56%,丝状菌污泥膨胀亦得到基本控制.  相似文献   

13.
以普通絮状活性污泥为接种污泥,采用人工配制的模拟生活污水,通过逐步缩短沉降时间的方法,在SBAR中成功地培养出了成熟的好氧颗粒污泥。颗粒污泥的SVI为19.97mL/g,粒径在0.45~2.0mm之间,平均沉降速率为45.62m/h,SOUR为47.68g/kg·h,均优于普通絮状污泥。通过扫描电镜观察,颗粒污泥表面粗糙,轮廓清晰,分布着一些沟壑和微小孔道,微生物以杆菌和球菌为主。研究表明,该好氧颗粒污泥反应器具有良好的去除COD和NH4^+-N的能力,去除率分别达到93%和98%以上,对TP的去除率也达到了60%左右。  相似文献   

14.
垃圾渗滤液为难处理的高浓度有机废水,上流式厌氧污泥床(UASB)工艺被证明是处理该类废水的有效手段。为此,以一系列不同渗滤液浓度的模拟废水作为进水,对逐步启动UASB反应器进行了动态小试,得出了UASB工艺处理垃圾渗滤液的较快速启动方法。结果显示:接种普通厌氧污泥,逐步增加反应器负荷,经过95d的运行,完成启动。此时进水COD质量浓度为5250mg/L,COD去除率为85%,容积COD负荷达8.4kg/(m^3·d),容积产气率为5.0m^3/(m^3·d),反应器底部形成少量颗粒污泥。  相似文献   

15.
以河南某酒精厂的高浓度废水处理工程为对象深入研究厌氧复合床(UBF)反应器的启动过程.废水水质CODcr为12 000~15 000 mg/L;BOD5为6 000~8 000 mg/L;pH3.7~5.0.本次启动研究了反应器内COD去除情况、pH变化、颗粒污泥形成、填料的作用等内容,共历时5个月.启动完成并进入稳定运行期后,出水COD去除率为90%以上、pH值保持在6.6~7.8,并形成沉淀性能良好、具有一定机械强度、粒径为1~4mm的颗粒污泥.  相似文献   

16.
在SBR反应器中,接种普通活性污泥,以沉降时间为选择要素,逐渐提高氨氮负荷成功培养了以氨氧化细菌(AOB)为优势菌的好氧硝化颗粒污泥,其形态近似为球形或椭圆形,平均粒径1.1mm,平均沉降速率为1.9cm·S-1,SVI在18.2~31.4mL·g-1之间,对氨氮的去除率达95%,亚硝酸盐积累率维持在809/6~90%。颗粒污泥形成后,氨氧负荷达到了0.0455kgNH4+-N(kgMLSS·d)-1,与启动期相比,提高了4.55倍。分子生物学FISH技术对颗粒污泥茵群结构的定量分析表明,AOB占全部茵群的14.9oA左右,NoB占0.89oA左右。反应初期高FA和反应后期高FNA的共同作用可能是该研究中实现和维持稳定短程硝化的关键。  相似文献   

17.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥.第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势.硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上.硝化速率本符合零级动力学方程,比硝化速率常数为0.0024h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0.740 g/(L·h-1).利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、7.25 mg/L时,去除率分别为93.5%、76.7%和94.1%,驯化培养的双污泥具有良好的脱氮除磷效果.  相似文献   

18.
不同运行模式下CAST工艺脱氮除磷性能研究   总被引:2,自引:0,他引:2  
采用三个结构相同的循环式活性污泥法(CAST)反应器,对常规模式、缺氧好氧模式、缺氧好氧交替模式运行下系统的脱氮除磷性能进行了研究,分析了CAST工艺脱氮除磷的限制因素,并且比较了不同运行工况下的系统污泥沉降性能.结果表明:温度为24,℃时,反应器在三种运行工况下总氮的平均去除率分别为67.32%,70.64%8,2.43%,脱氮过程中的限制性因素为曝气时间及温度;增设缺氧搅拌可以提高系统脱氮效率,从而降低回流液体的硝态氮浓度,进而有助于正磷酸盐去除率的提高,三种工况下系统正磷酸盐的去除率分别为65.66%,81.40%,98.01%;三种运行工况下系统内污泥均未发生污泥膨胀,工况三模式下的反应器中的污泥的SVI值在80,mL/g左右,沉降性能最好.  相似文献   

19.
在序批式SBR反应器中接种普通活性污泥,通过厌氧/好氧交替的运行方式,以沉降时间作为选择要素,经过人工配水快速实现污泥颗粒化(阶段Ⅰ)、实际生活污水稳定维持(阶段Ⅱ)以及提高ρ(P)/ρ(COD)强化富集聚磷菌(阶段Ⅲ)3个阶段,成功培养出聚磷能力良好的好氧颗粒污泥,并稳定运行352周期.模拟废水水质成份单一且易降解是造成好氧颗粒污泥在阶段Ⅰ后期发生膨胀的主要原因,变换水质为实际生活污水可有效控制丝状菌的过度生长,利于维持系统稳定.成熟的好氧颗粒污泥近似为球形,平均粒径0.8 mm,平均沉降速率为2.0 cm/s,SVI在17~30 mL/g,平均除磷效率在90%以上.采用荧光原位杂交技术(FISH)对颗粒污泥种群结构定量分析,结果表明,聚磷菌约占总菌的51.48%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号