首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Planar micro‐supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide‐based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro‐supercapacitors is introduced. Specific capacitance of up to 1 kF m?2 (100 mF cm?2) with peak energy and power density of 2 kJ m?2 (6.2 MJ m?3 or 1.7 mWh cm?3) and 150 kW m?2 (480 MW m?3 or 480 W cm?3), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m2 or 24.9 mΩ cm2) and large specific capacitance, is among the highest for planar micro‐supercapacitors electrodes made of nanomaterials.  相似文献   

14.
15.
The conventional procedure for electrospinning has been modified to generate nanofibers as uniaxially aligned arrays over large areas. The key to the success of this method was the use of a collector composed of two conductive strips separated by an insulating gap of variable width. Directed by electrostatic interactions, the charged nanofibers were stretched to span across the gap and became uniaxially aligned arrays. Two types of gaps have been demonstrated: void gaps and gaps made of a highly insulating material. When a void gap was used, the nanofibers could readily be transferred onto the surfaces of other substrates for various applications. When an insulating substrate was involved, the electrodes could be patterned in various designs on the solid insulator. In both cases, the nanofibers could be conveniently stacked into multi‐layered architectures with controllable hierarchical structures. This new version of electrospinning has already been successfully applied to a range of different materials that include organic polymers, carbon, ceramics, and composites.  相似文献   

16.
High‐performance yet flexible micro‐supercapacitors (MSCs) hold great promise as miniaturized power sources for increasing demand of integrated electronic devices. Herein, this study demonstrates a scalable fabrication of multilayered graphene‐based MSCs (MG‐MSCs), by direct laser writing (DLW) of stacked graphene films made from industry‐scale chemical vapor deposition (CVD). Combining the dry transfer of multilayered CVD graphene films, DLW allows a highly efficient fabrication of large‐areal MSCs with exceptional flexibility, diverse planar geometry, and capability of customer‐designed integration. The MG‐MSCs exhibit simultaneously ultrahigh energy density of 23 mWh cm?3 and power density of 1860 W cm?3 in an ionogel electrolyte. Notably, such MG‐MSCs demonstrate an outstanding flexible alternating current line‐filtering performance in poly(vinyl alcohol) (PVA)/H2SO4 hydrogel electrolyte, indicated by a phase angle of ?76.2° at 120 Hz and a resistance–capacitance constant of 0.54 ms, due to the efficient ion transport coupled with the excellent electric conductance of the planar MG microelectrodes. MG–polyaniline (MG‐PANI) hybrid MSCs fabricated by DLW of MG‐PANI hybrid films show an optimized capacitance of 3.8 mF cm?2 in PVA/H2SO4 hydrogel electrolyte; an integrated device comprising MG‐MSCs line filtering, MG‐PANI MSCs, and pressure/gas sensors is demonstrated.  相似文献   

17.
18.
On‐chip micro‐supercapacitors (MSCs), as promising power candidates for microdevices, typically exhibit high power density, large charge/discharge rates, and long cycling lifetimes. However, as for most reported MSCs, the unsatisfactory areal energy density (<10 µWh cm?2) still hinders their practical applications. Herein, a new‐type Zn‐ion hybrid MSC with ultrahigh areal energy density and long‐term durability is demonstrated. Benefiting from fast ion adsorption/desorption on the capacitor‐type activated‐carbon cathode and reversible Zn stripping/plating on the battery‐type electrodeposited Zn‐nanosheet anode, the fabricated Zn‐ion hybrid MSCs exhibit remarkable areal capacitance of 1297 mF cm?2 at 0.16 mA cm?2 (259.4 F g?1 at a current density of 0.05 A g?1), landmark areal energy density (115.4 µWh cm?2 at 0.16 mW cm?2), and a superb cycling stability without noticeable decay after 10 000 cycles. This work will inspire the fabrication and development of new high‐performance microenergy devices based on novel device design.  相似文献   

19.
20.
A simple strategy for the synthesis of heteroatom‐doped porous carbon materials (CMs) via using ionic liquid (IL)‐doped alkali organic salts as small molecular precursors is developed. Doping of alkali organic salts (such as sodium glutamate, sodium tartrate, and sodium citrate) with heteroatoms containing ILs (including 1‐butyl‐3‐methylimidazolium chlorine and 3‐butyl‐4‐methythiazolebromination) not only incorporates the heteroatoms into the carbon frameworks but also highly improves the carbonization yield, as compared with that of either alkali organic salts or ILs as precursors. The porous structure of CMs can be tuned by adjusting the feed ratio of ILs. The porous CMs derived from 1‐butyl‐3‐methylimidazolium chlorine‐doped sodium glutamate exhibit high charge storage capacity with a specific capacitance of 287 F g?1 and good stability over 5000 cycles in 6 m KOH at a current density of 1 A g?1 for supercapacitors. This strategy opens a simple and efficient method for the synthesis of heteroatom‐doped porous CMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号