首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past 30 years, significant commercial and academic progress has been made on Li‐based battery technologies. From the early Li‐metal anode iterations to the current commercial Li‐ion batteries (LIBs), the story of the Li‐based battery is full of breakthroughs and back tracing steps. This review will discuss the main roles of material science in the development of LIBs. As LIB research progresses and the materials of interest change, different emphases on the different subdisciplines of material science are placed. Early works on LIBs focus more on solid state physics whereas near the end of the 20th century, researchers began to focus more on the morphological aspects (surface coating, porosity, size, and shape) of electrode materials. While it is easy to point out which specific cathode and anode materials are currently good candidates for the next‐generation of batteries, it is difficult to explain exactly why those are chosen. In this review, for the reader a complete developmental story of LIB should be clearly drawn, along with an explanation of the reasons responsible for the various technological shifts. The review will end with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium‐ion battery chemistries.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Lithium‐ion batteries (LIBs) are promising energy storage devices for integrating renewable resources and high power applications, owing to their high energy density, light weight, high flexibility, slow self‐discharge rate, high rate charging capability, and long battery life. LIBs work efficiently at ambient temperatures, however, at high‐temperatures, they cause serious issues due to the thermal fluctuation inside batteries during operation. The separator is a key component of batteries and is crucial for the sustainability of LIBs at high‐temperatures. The high thermal stability with minimum thermal shrinkage and robust mechanical strength are the prime requirements along with high porosity, ionic conductivity, and electrolyte uptake for highly efficient high‐temperature LIBs. This Review deals with the recent studies and developments in separator technologies for high‐temperature LIBs with respect to their structural layered formation. The recent progress in monolayer and multilayer separators along with the developed preparation methodologies is discussed in detail. Future challenges and directions toward the advancement in separator technology are also discussed for achieving remarkable performance of separators in a high‐temperature environment.  相似文献   

17.
18.
SnO2‐based lithium‐ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO2?x , which homogenizes the redox reactions and stabilizes fine, fracture‐resistant Sn precipitates in the Li2O matrix. Such fine Sn precipitates and their ample contact with Li2O proliferate the reversible Sn → Li x Sn → Sn → SnO2/SnO2?x cycle during charging/discharging. SnO2?x electrode has a reversible capacity of 1340 mAh g?1 and retains 590 mAh g?1 after 100 cycles. The addition of highly conductive, well‐dispersed reduced graphene oxide further stabilizes and improves its performance, allowing 950 mAh g?1 remaining after 100 cycles at 0.2 A g?1 with 700 mAh g?1 at 2.0 A g?1. Conductivity‐directed microstructure development may offer a new approach to form advanced electrodes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号