首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct conversion of solar energy into chemical energy in a sustainable manner is one of the most promising solutions to the energy crisis and environmental issues. Fabrication of highly active photocatalysts is of great significance for the practical applications of efficient solar‐to‐chemical energy conversion systems. Among various photocatalytic materials, semiconductor‐based heterostructured photocatalysts with hollow features show distinct advantages. Recent research efforts on rational design of heterostructured hollow photocatalysts toward photocatalytic water splitting and CO2 reduction are presented. First, both single‐shelled and multishelled heterostructured photocatalysts are surveyed. Then, heterostructured hollow photocatalysts with tube‐like and frame‐like morphologies are discussed. It is intended that further innovative works on the material design of high‐performance photocatalysts for solar energy utilization can be inspired.  相似文献   

2.
Inspired by nature, artificial photosynthesis through the construction of direct Z‐scheme photocatalysts is extensively studied for sustainable solar fuel production due to the effectiveness in enhancing photoconversion efficiency. However, there is still a lack of thorough understanding and direct evidence for the direct Z‐scheme charge transfer in these photocatalysts. Herein, a recyclable direct Z‐scheme composite film composed of titanium dioxide and cadmium sulfide (TiO2/CdS) is prepared for high‐efficiency photocatalytic carbon dioxide (CO2) reduction. In situ irradiated X‐ray photoelectron spectroscopy (ISI‐XPS) confirms the direct Z‐scheme charge‐carrier migration pathway in the photocatalytic system. Furthermore, density functional theory simulation identifies the intrinsic cause for the formation of the direct Z‐scheme heterojunction between the TiO2 and the CdS. Thanks to the significantly enhanced redox abilities of the charge carriers in the direct Z‐scheme system, the photocatalytic CO2 reduction performance of the optimized TiO2/CdS is 3.5, 5.4, and 6.3 times higher than that of CdS, TiO2, and commercial TiO2 (P25), respectively, in terms of methane production. This work is a valuable guideline in preparation of highly efficient recyclable nanocomposite for photoconversion applications.  相似文献   

3.
Ultrabroad‐spectrum absorption and highly efficient generation of available charge carriers are two essential requirements for promising semiconductor‐based photocatalysts, towards achieving the ultimate goal of solar‐to‐fuel conversion. Here, a fascinating nonmetal plasmonic Z‐scheme photocatalyst with the W18O49/g‐C3N4 heterostructure is reported, which can effectively harvest photon energies spanning from the UV to the nearinfrared region and simultaneously possesses improved charge‐carrier dynamics to boost the generation of long‐lived active electrons for the photocatalytic reduction of protons into H2. By combining with theoretical simulations, a unique synergistic photocatalysis effect between the semiconductive Z‐scheme charge‐carrier separation and metal‐like localized‐surface‐plasmon‐resonance‐induced “hot electrons” injection process is demonstrated within this binary heterostructure.  相似文献   

4.
As a sustainable technology, semiconductor photocatalysis has attracted considerable interest in the past several decades owing to the potential to relieve or resolve energy and environmental‐pollution issues. By virtue of their unique structural and electronic properties, emerging ultrathin 2D materials with appropriate band structure show enormous potential to achieve efficient photocatalytic performance. Here, the state‐of‐the‐art progress on ultrathin 2D photocatalysts is reviewed and a critical appraisal of the classification, controllable synthesis, and formation mechanism of ultrathin 2D photocatalysts is presented. Then, different strategies to tailor the electronic structure of ultrathin 2D photocatalysts are summarized, including component tuning, thickness tuning, doping, and defect engineering. Hybridization with the introduction of a foreign component and maintaining the ultrathin 2D structure is presented to further boost the photocatalytic performance, such as quantum dots/2D materials, single atoms/2D materials, molecular/2D materials, and 2D–2D stacking materials. More importantly, the advancement of versatile photocatalytic applications of ultrathin 2D photocatalysts in the fields of water oxidation, hydrogen evolution, CO2 reduction, nitrogen fixation, organic syntheses, and removal pollutants is discussed. Finally, the future opportunities and challenges regarding ultrathin 2D photocatalysts to bring about new opportunities for future research in the field of photocatalysis are also presented.  相似文献   

5.
The development of an artificial photosynthetic system is a promising strategy to convert solar energy into chemical fuels. Here, a direct Z‐scheme CdS–WO3 photocatalyst without an electron mediator is fabricated by imitating natural photosynthesis of green plants. Photocatalytic activities of as‐prepared samples are evaluated on the basis of photocatalytic CO2 reduction to form CH4 under visible light irradiation. These Z‐scheme‐heterostructured samples show a higher photocatalytic CO2 reduction than single‐phase photocatalysts. An optimized CdS–WO3 heterostructure sample exhibits the highest CH4 production rate of 1.02 μmol h?1 g?1 with 5 mol% CdS content, which exceeds the rates observed in single‐phase WO3 and CdS samples for approximately 100 and ten times under the same reaction condition, respectively. The enhanced photocatalytic activity could be attributed to the formation of a hierarchical direct Z‐scheme CdS–WO3 photocatalyst, resulting in an efficient spatial separation of photo‐induced electron–hole pairs. Reduction and oxidation catalytic centers are maintained in two different regions to minimize undesirable back reactions of the photocatalytic products. The introduction of CdS can enhance CO2 molecule adsorption, thereby accelerating photocatalytic CO2 reduction to CH4. This study provides novel insights into the design and fabrication of high‐performance artificial Z‐scheme photocatalysts to perform photocatalytic CO2 reduction.  相似文献   

6.
The challenge in the artificial photosynthesis of fossil resources from CO2 by utilizing solar energy is to achieve stable photocatalysts with effective CO2 adsorption capacity and high charge‐separation efficiency. A hierarchical direct Z‐scheme system consisting of urchin‐like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO2 to CO, yielding a CO evolution rate of 27.2 µmol g?1 h?1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g‐C3N4 alone (10.3 µmol g?1 h?1). The enhanced photocatalytic activity of the Z‐scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin‐like hematite and preferable basic sites which promotes the CO2 adsorption, and (ii) the unique Z‐scheme feature efficiently promotes the separation of the electron–hole pairs and enhances the reducibility of electrons in the conduction band of the g‐C3N4. The origin of such an obvious advantage of the hierarchical Z‐scheme is not only explained based on the experimental data but also investigated by modeling CO2 adsorption and CO adsorption on the three different atomic‐scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal‐oxide‐based Z‐scheme system for solar fuel generation.  相似文献   

7.
Inspired by natural photosynthesis, the design of new Z‐scheme photocatalytic systems is very promising for boosting the photocatalytic performance of H2 production and CO2 reduction; however, until now, the direct synthesis of efficient Z‐scheme photocatalysts remains a grand challenge. Herein, it is demonstrated that an interesting Z‐scheme photocatalyst can be constructed by coupling In2O3 and ZnIn2Se4 semiconductors based on theoretical calculations. Experimentally, a class of ultrathin In2O3–ZnIn2Se4 (denoted as In2O3–ZISe) spontaneous Z‐scheme nanosheet photocatalysts for greatly enhancing photocatalytic H2 production is made. Furthermore, Mo atoms are incorporated in the Z‐scheme In2O3–ZISe nanosheet photocatalyst by forming the Mo? Se bond, confirmed by X‐ray photoelectron spectroscopy, in which the formed MoSe2 works as cocatalyst of the Z‐scheme photocatalyst. As a consequence, such a unique structure of In2O3–ZISe–Mo makes it exhibit 21.7 and 232.6 times higher photocatalytic H2 evolution activity than those of In2O3–ZnIn2Se4 and In2O3 nanosheets, respectively. Moreover, In2O3–ZISe–Mo is also very stable for photocatalytic H2 production by showing almost no activity decay for 16 h test. Ultraviolet–visible diffuse reflectance spectra, photoluminescence spectroscopy, transient photocurrent spectra, and electrochemical impedance spectroscopy reveal that the enhanced photocatalytic performance of In2O3–ZISe–Mo is mainly attributed to its widened photoresponse range and effective carrier separation because of its special structure.  相似文献   

8.
The properly designed semiconductor photocatalysts are promising materials for solving the current serious energy and environmental issues because of their ability of using sunlight to stimulate various photocatalytic reactions. Especially, the constructed direct Z-scheme photocatalysts, mimicking the natural photosynthesis system, possess many merits, including increased light harvesting, spatially separated reductive and oxidative active sites, and well-preserved strong redox ability, which benefit the photocatalytic performance. This review concisely compiles the recent progress in the fabrication, modification, and major applications of the direct Z-scheme photocatalysts; the latter include water splitting, carbon dioxide reduction, degradation of pollutants, and biohazard disinfection. It finishes with a brief presentation of future challenges and prospects in the development of direct Z-scheme photocatalytic systems.  相似文献   

9.
The generation of green hydrogen (H2) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H2 production is a highly promising strategy for solar‐to‐H2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal‐free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal‐free phosphorene/graphitic carbon nitride (g‐C3N4) is fabricated. The phosphorene/g‐C3N4 nanocomposite shows an enhanced visible‐light photocatalytic H2 production activity of 571 µmol h?1 g?1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron‐based X‐ray absorption near‐edge structure, and theoretical calculations. This work not only reports a new metal‐free phosphorene/g‐C3N4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.  相似文献   

10.
The judicious design of efficient electron mediators to accelerate the interfacial charge transfer in a Z‐scheme system is one of the viable strategies to improve the performance of photocatalysts for artificial photosynthesis. Herein, ultrathin and small‐size graphene oxide (USGO) nanosheets are constructed and employed as the electron mediator to elaborately exploit an efficient CsPbBr3‐based all‐solid‐state Z‐scheme system in combination with α‐Fe2O3 for visible‐light‐driven CO2 reduction with water as the electron source. CsPbBr3 and α‐Fe2O3 can be closely anchored on USGO nanosheets, owing to the existence of interfacial strong chemical bonding behaviors, which can significantly accelerate the photogenerated carrier transfer between CsPbBr3 and α‐Fe2O3. The resultant improved charge separation efficiency endows the Z‐scheme system exhibiting a record‐high electron consumption rate of 147.6 µmol g?1 h?1 for photocatalytic CO2‐to‐CO conversion concomitant with stoichiometric O2 from water oxidation, which is over 19 and 12 times higher than that of pristine CsPbBr3 nanocrystals and the mixture of CsPbBr3 and α‐Fe2O3, respectively. This work provides a novel and effective strategy for improving the catalytic activity of halide‐perovskite‐based photocatalysts, promoting their practical applications in the field of artificial photosynthesis.  相似文献   

11.
Nano‐photocatalysts are known for their ability to degrade pollutants or perform water splitting catalyzed by light. Being the key functional ingredients of current and future products, the potential of nano‐photocatalysts releasing into the environment and causing unintended harm to living organisms warrants investigation. Risk assessment of these materials serves as an important step to allow safe implementation and to avoid irrational fear. Using TiO2 and g‐C3N4 as representative nano‐photocatalysts, this study evaluates their hazard potential in zebrafish. Under simulated solar light, nano‐photocatalysts up to 100 mg L?1 show no acute toxicity to zebrafish embryos due to the protection of chorions. The short‐lived reactive oxygen species generated by nano‐photocatalysts only exert injury to the hatched larvae at and above 50 mg L?1. The input of solar energy, determined by the depth of water, irradiation time, and light intensity, greatly influences the toxicity outcome. Increasing concentrations of natural organic matters contribute positively to the hazard potential at 0–10 mg L?1 while gradually diminishing the hazardous effect above 10 mg L?1. This study demonstrates the importance of nano‐bio interactions and environmental exposure conditions in determining the safety profile of nano‐photocatalysts.  相似文献   

12.
Organic pollutants including industrial dyes and chemicals and agricultural waste have become a major environmental issue in recent years. As an alternative to simple adsorption, photocatalytic decontamination is an efficient and energy‐saving technology to eliminate these pollutants from water environment, utilizing the energy of external light, and unique function of photocatalysts. Having a large specific surface area, numerous active sites, and varied band structures, 2D nanosheets have exhibited promising applications as an efficient photocatalyst for degrading organic pollutants, particularly hybridization with other functional components. The novel hybridization of 2D nanomaterials with various functional species is summarized systematically with emphasis on their enhanced photocatalytic activities and outstanding performances in environmental remediation. First, the mechanism of photocatalytic degradation is given for discussing the advantages/shortcomings of regular 2D materials and identifying the importance of constructing hybrid 2D photocatalysts. An overview of several types of intensively investigated 2D nanomaterials (i.e., graphene, g‐C3N4, MoS2, WO3, Bi2O3, and BiOX) is then given to indicate their hybridized methodologies, synergistic effect, and improved applications in decontamination of organic dyes and other pollutants. Finally, future research directions are rationally suggested based on the current challenges.  相似文献   

13.
Metal oxides, as one of the mostly abundant and widely utilized materials, are extensively investigated and applied in environmental remediation and protection, and in energy conversion and storage. Most of these diverse applications are the result of a large diversity of the electronic states of metal oxides. Noticeably, however, many metal oxides present obstacles for applications in catalysis, mainly due to the lack of efficient active sites with desired electronic states. Here, the fabrication of single‐tungsten‐atom‐oxide (STAO) is demonstrated, in which the metal oxide's volume reaches its minimum as a unit cell. The catalytic mechanism in the STAO is determined by a new single‐site physics mechanism, named as quasi‐atom physics. The photogenerated electron transfer process is enabled by an electron in the spin‐up channel excited from the highest occupied molecular orbital to the lowest unoccupied molecular orbital +1 state, which can only occur in STAO with W5+. STAO results in a record‐high and stable sunlight photocatalytic degradation rate of 0.24 s?1, which exceeds the rates of available photocatalysts by two orders of magnitude. The fabrication of STAO and its unique quasi‐atom photocatalytic mechanism lays new ground for achieving novel physical and chemical properties using single‐metal‐atom oxides (SMAO).  相似文献   

14.
Photocatalysis technology using solar energy for hydrogen (H2) production still faces great challenges to design and synthesize highly efficient photocatalysts, which should realize the precise regulation of reactive sites, rapid migration of photoinduced carriers and strong visible light harvest. Here, a facile hierarchical Z‐scheme system with ZnIn2S4/BiVO4 heterojunction is proposed, which can precisely regulate redox centers at the ZnIn2S4/BiVO4 hetero‐interface by accelerating the separation and migration of photoinduced charges, and then enhance the oxidation and reduction ability of holes and electrons, respectively. Therefore, the ZnIn2S4/BiVO4 heterojunction exhibits excellent photocatalytic performance with a much higher H2‐evolution rate of 5.944 mmol g?1 h?1, which is about five times higher than that of pure ZnIn2S4. Moreover, this heterojunction shows good stability and recycle ability, providing a promising photocatalyst for efficient H2 production and a new strategy for the manufacture of remarkable photocatalytic materials.  相似文献   

15.
韩成  雷永鹏  王应德 《无机材料学报》2015,30(11):1121-1130
光催化制取太阳能燃料主要包括光催化分解H2O制取H2及光催化还原CO2制取碳氢化合物, 是应对能源危机最具前景的方法之一。目前, 太阳能燃料的最高转化效率为5%, 无法满足商业化要求(≥10%)。纳米异质结由于能展现出单组分纳米材料或体相异质结所不具备的独特性质, 更能促进光生电子和空穴快速转移, 提供更多的光生电子或使光生电子具有更强的还原性, 因而能显著提高光催化活性。本文主要综述了几种纳米异质结(I-型、II-型、p-n型及Z-型)的光催化原理及其在制取太阳能燃料方面的研究进展, 并展望了研究发展方向。  相似文献   

16.
Photocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar-to-chemical energy conversion. Single-atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single-atom photocatalysts in detail. Subsequently, the fascinating effects of single-atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron-hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single-atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single-atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single-atom photocatalysts and promote the development of high-performance photocatalytic systems.  相似文献   

17.
Scalable and sustainable solar hydrogen production via photocatalytic water splitting requires extremely active and stable light‐harvesting semiconductors to fulfill the stringent requirements of suitable energy band position and rapid interfacial charge transfer process. Motivated by this point, increasing attention has been given to the development of photocatalysts comprising intimately interfaced photoabsorbers and cocatalysts. Herein, a simple one‐step approach is reported to fabricate a high‐efficiency photocatalytic system, in which single‐site dispersed iron atoms are rationally integrated on the intrinsic structure of the porous crimped graphitic carbon nitride (g‐C3N4) polymer. A detailed analysis of the formation process shows that a stable complex is generated by spontaneously coordinating dicyandiamidine nitrate with iron ions in isopropanol, thus leading to a relatively complicated polycondensation reaction upon thermal treatment. The correlation of experimental and computational results confirms that optimized electronic structures of Fe@g‐C3N4 with an appropriate d‐band position and negatively shifting Fermi level can be achieved, which effectively gains the reducibility of electrons and creates more active sites for the photocatalytic reactions. As a result, the Fe@g‐C3N4 exhibits a highlighted intramolecular synergistic effect, performing greatly enhanced solar‐photon‐driven activities, including excellent photocatalytic hydrogen evolution rate (3390 µmol h?1 g?1, λ > 420 nm) and a reliable apparent quantum efficiency value of 6.89% at 420 nm.  相似文献   

18.
Photocatalytic approaches, that is the reaction of light‐produced charge carriers at a semiconductor surface with their environment, currently attract an extremely wide scientific interest. This is to a large extent due to the high expectations: i) to convert sunlight directly into an energy carrier (H2), ii) to stimulate chemical synthetic reactions, or iii) to degrade unwanted environmental pollutants. Since the early reports in 1972, TiO2 has been the most investigated photocatalytic material by far; this originates from its outstanding electronic properties that allow for a wide range of applications. Not only the material, but also its structure and morphology, can have a considerable influence on the photocatalytic performance of TiO2. In recent years, particularly 1D (or pseudo 1D) structures such as nanowires and nanotubes have received great attention. The present Review focuses on TiO2 nanotube arrays (and similar structures) that grow by self‐organizing electrochemistry (highly aligned) from a Ti metal substrate. Herein, the growth, properties, and applications of these tubes are discussed, as well as ways and means to modify critical tube properties. Common strategies are addressed to improve the performance of photocatalysts such as doping or band‐gap engineering, co‐catalyst decoration, junction formation, or applying external bias. Finally, some unique applications of the ordered tube structures in various photocatalytic approaches are outlined.  相似文献   

19.
Photocatalytic and photoelectrochemical processes are two key systems in harvesting sunlight for energy and environmental applications. As both systems are employing photoactive semiconductors as the major active component, strategies have been formulated to improve the properties of the semiconductors for better performances. However, requirements to yield excellent performances are different in these two distinctive systems. Although there are universal strategies applicable to improve the performance of photoactive semiconductors, similarities and differences exist when the semiconductors are to be used differently. Here, considerations on selected typical factors governing the performances in photocatalytic and photoelectrochemical systems, even though the same type of semiconductor is used, are provided. Understanding of the underlying mechanisms in relation to their photoactivities is of fundamental importance for rational design of high-performing photoactive materials, which may serve as a general guideline for the fabrication of good photocatalysts or photoelectrodes toward sustainable solar fuel generation.  相似文献   

20.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号