首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chemotherapy causes off-target toxicity and is often ineffective against solid tumors. Targeted and on-demand release of chemotherapeutics remains a challenge. Here, cancer-cell-membrane-coated mesoporous organosilica nanoparticles (MONs) containing X-ray- and reactive oxygen species (ROS)-responsive diselenide bonds for controlled release of doxorubicin (DOX) at tumor sites are developed. DOX-loaded MONs coated with 4T1 breast cancer cell membranes (CM@MON@DOX) show greater accumulation at tumor sites and prolonged blood circulation time versus an uncoated control in mice bearing 4T1 orthotopic mammary tumors. Under low-dose X-ray radiation, the DOX-loaded MONs exhibit carrier degradation-controlled release via cleavage of diselenide bonds, resulting in DOX-mediated immunogenic cell death at the tumor site. Combination with a PD-L1 checkpoint blockade further enhances inhibition of tumor growth and metastasis with low systemic toxicity. Together, the findings show the promise of these biomimetic, radiation-responsive diselenide-bond-bridged MONs in chemo-immunotherapy.  相似文献   

3.
4.
5.
6.
The synthesis of mesoporous nanoparticles with controllable structure and organic groups is important for their applications. In this work, yolk–shell‐structured periodic mesoporous organosilica (PMO) nanoparticles simultaneously incorporated with ethane‐, thioether‐, and benzene‐bridged moieties are successfully synthesized. The preparation of the triple‐hybridized PMOs is via a cetyltrimethylammonium bromide‐directed sol–gel process using mixed bridged silsesquioxanes as precursors and a following hydrothermal treatment. The yolk–shell‐structured triple‐hybridized PMO nanoparticles have large surface area (320 m2 g–1), ordered mesochannels (2.5 nm), large pore volume (0.59 cm3 g–1), uniform and controllable diameter (88–380 nm), core size (22–110 nm), and shell thickness (13–45 nm). In vitro cytotoxicity, hemolysis assay, and histological studies demonstrate that the yolk–shell‐structured triple‐hybridized PMO nanoparticles have excellent biocompatibility. Moreover, the organic groups in the triple‐hybridized PMOs endow them with an ability for covalent connection of near‐infrared fluorescence dyes, a high hydrophobic drug loading capacity, and a glutathione‐responsive drug release property, which make them promising candidates for applications in bioimaging and drug delivery.  相似文献   

7.
8.
Mesoporous carbon nanospheres (MCNs) with small diameters of ≈90 nm are developed as an efficient transmembrane delivery vehicle of an anticancer drug, doxorubicin (DOX). MCNs exhibit a high loading capacity toward DOX due to hydrophobic interactions and the supramolecular π stacking between DOX and the carbonaceous structures, on which the pH-dependent drug release are successfully achieved. Specifically, DOX can be loaded onto MCNs in basic solution and in a physiological pH range, while release occurs in acidic solution in its ionized state. By effective passive and active targeting, MCNs can be readily internalized into HeLa cells, where the carried DOX can be efficiently released in the acidic microenvironment of the tumors for further therapy. The endocytosis and cytotoxicity of DOX@MCNs toward HeLa cells are investigated by confocal microscopy and MTT assay. This smart pH-dependent drug loading and release property of DOX@MCNs makes it possible to reduce the cytotoxicity to normal tissues during circulation in the body since the normal physiological pH is ≈7.4.  相似文献   

9.
10.
In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle‐type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano‐based targeted cancer therapy and MSN‐based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused.  相似文献   

11.
12.
Targeted delivery of the chemotherapeutic agent methotrexate (MTX) to cancer cells using poly(ethyleneimine)‐functionalized mesoporous silica particles as drug‐delivery vectors is reported. Due to its high affinity for folate receptors, the expression of which is elevated in cancer cells, MTX serves as both a targeting ligand and a cytotoxic agent. Enhanced cancer‐cell apoptosis (programmed cell death) relative to free MTX is thus observed at particle concentrations where nonspecific MTX‐induced apoptosis is not observed in the nontargeted healthy cell line, while corresponding amounts of free drug affect both cell lines equally. The particles remain compartmentalized in endo‐/lysosomes during the time of observation (up to 72 h), while the drug is released from the particle only upon cell entry, thereby inducing selective apoptosis in the target cells. As MTX is mainly attached to the particle surface, an additional advantage is that the presented carrier design allows for adsorption (loading) of additional drugs into the pore network for therapies based on a combination of drugs.  相似文献   

13.
14.
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide‐bond‐containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual‐responsiveness is reported. These diselenide‐bridged MSNs can encapsulate cytotoxic RNase A into the 8–10 nm internal pores via electrostatic interaction and release the payload via a matrix‐degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer‐cell‐derived membrane fragments, these bioinspired RNase A‐loaded MSNs exhibit homologous targeting and immune‐invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti‐cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell‐membrane‐coated, dual‐responsive degradable MSNs represent a promising platform for the delivery of bio‐macromolecules such as protein and nucleic acid therapeutics.  相似文献   

15.
16.
The application of nanotechnology in the field of drug delivery has attracted much attention in the latest decades. Recent breakthroughs on the morphology control and surface functionalization of inorganic‐based delivery vehicles, such as mesoporous silica nanoparticles (MSNs), have brought new possibilities to this burgeoning area of research. The ability to functionalize the surface of mesoporous‐silica‐based nanocarriers with stimuli‐responsive groups, nanoparticles, polymers, and proteins that work as caps and gatekeepers for controlled release of various cargos is just one of the exciting results reported in the literature that highlights MSNs as a promising platform for various biotechnological and biomedical applications. This review focuses on the most recent progresses in the application of MSNs for intracellular drug delivery. The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described. One of the main areas of interest in this field is the development of site‐specific drug delivery vehicles; the contribution of MSNs toward this topic is also summarized. In addition, the current research progress on the biocompatibility of this material in vitro and in vivo is discussed. Finally, the latest breakthroughs for intracellular controlled drug release using stimuli‐responsive mesoporous‐silica‐based systems are described.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号