共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nanogenerators: Transparent Flexible Graphene Triboelectric Nanogenerators (Adv. Mater. 23/2014) 下载免费PDF全文
Seongsu Kim Manoj Kumar Gupta Keun Young Lee Ahrum Sohn Tae Yun Kim Kyung‐Sik Shin Dohwan Kim Sung Kyun Kim Kang Hyuck Lee Hyeon‐Jin Shin Dong‐Wook Kim Sang‐Woo Kim 《Advanced materials (Deerfield Beach, Fla.)》2014,26(23):3778-3778
3.
4.
5.
6.
7.
8.
9.
10.
Graphene Nanoinks: A Water‐Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers (Adv. Mater. 5/2018) 下载免费PDF全文
Chong Cheng Jianguang Zhang Shuang Li Yi Xia Chuanxiong Nie Zhenqiang Shi Jose Luis Cuellar‐Camacho Nan Ma Rainer Haag 《Advanced materials (Deerfield Beach, Fla.)》2018,30(5)
11.
12.
13.
14.
Graphene: Large‐Area Si‐Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing (Adv. Mater. 45/2014) 下载免费PDF全文
Ruitao Lv Maria Cristina dos Santos Claire Antonelli Simin Feng Kazunori Fujisawa Ayse Berkdemir Rodolfo Cruz‐Silva Ana Laura Elías Nestor Perea‐Lopez Florentino López‐Urías Humberto Terrones Mauricio Terrones 《Advanced materials (Deerfield Beach, Fla.)》2014,26(45):7676-7676
15.
Nanogenerators: Hydrophobic Sponge Structure‐Based Triboelectric Nanogenerator (Adv. Mater. 29/2014) 下载免费PDF全文
Keun Young Lee Jinsung Chun Ju‐Hyuck Lee Kyeong Nam Kim Na‐Ri Kang Ju‐Young Kim Myung Hwa Kim Kyung‐Sik Shin Manoj Kumar Gupta Jeong Min Baik Sang‐Woo Kim 《Advanced materials (Deerfield Beach, Fla.)》2014,26(29):4909-4909
16.
Graphene: Layer‐Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures (Adv. Mater. 20/2014) 下载免费PDF全文
Birong Luo Bingyan Chen Lan Meng Dechao Geng Hongtao Liu Jie Xu Zhiyong Zhang Hantang Zhang Lianmao Peng Lin He Wenping Hu Yunqi Liu Gui Yu 《Advanced materials (Deerfield Beach, Fla.)》2014,26(20):3355-3355
17.
18.
19.
20.
Xinglong Pan Lihua Shen Albertus P. H. J. Schenning Cees W. M. Bastiaansen 《Advanced materials (Deerfield Beach, Fla.)》2019,31(40)
Transparent, ultradrawn, ultrahigh molecular weight polyethylene (UHMWPE)/graphene nanocomposite films with a high thermal conductivity are successfully fabricated by solution‐casting and solid‐state drawing. It is found that the low optical transmittance (<75%) of the ultradrawn UHMWPE/graphene composite films is drastically improved (>90%) by adding 2‐(2H‐benzontriazol‐2‐yl)‐4,6‐ditertpentylphenol (BZT) as a second additive. This high transmission is interpreted in terms of a reduced void content in the composite films and the improved dispersion of graphene both of which decrease light scattering. The high thermal conductivity is attributed to the π–π interaction between BZT and graphene. In addition, a high specific thermal conductivity of ≈75 W m?1 K?1 ρ?1 of the ultradrawn UHMWPE/graphene/BZT composite films is obtained, which is higher than most metals and polymer nanocomposite. These transparent films are potentially excellent candidates for thermal management in various applications due to a combination of low density, ease of processing, and high thermal conductivity. 相似文献