首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
HE De 《石油化工》2000,29(1):26-31
在小型高压反应釜中研究了铑系催化剂对于α,ω-二元羧酸单酯加氢生成ω-羟基羧酸酯的催化性能。结果表明,Rh-Re以及Rh-Mo双组份催化剂具有良好的催化加氢性能;α,ω-十五烷二酸单甲酯在Rh-Re和Rh-Mo双组份催化剂上加氢 生成ω-羟基十五烷酸甲酯的收率分别达到87.5%和84.7%;其它α,ω-二元羧酸单酯在Rh-Mo双组份催化剂上加氢生成相应的ω-羟基羧酸酯的收率也达到80.9%~91.3%。反应温度对α,ω-二元羧酸单酯加氢生成ω-羟基羧酸酯的收率有较大的影响,乙二醇二甲醚作为溶剂有利于目的产物的生成。  相似文献   

2.
在固定床反应器中,以甘油脱水制备α-羟基丙酮反应为研究对象,考察了CuO/SiO_2催化剂的制备条件以及反应条件对催化剂性能的影响。实验结果表明,催化剂的最佳制备条件为:CuO负载量(质量分数)为20%,在450℃下焙烧4h;采用该条件下制备的催化剂,在进料重时空速为1.4h~(-1)、反应温度为300℃、甘油溶液的质量分数为20%、反应时间6h的条件下,甘油的转化率达到99.28%,α-羟基丙酮的选择性为58.03%。通过XRD,NH_3-TPD,TG-DTA等手段对CuO/SiO_2催化剂进行了表征,表征结果显示,最佳制备条件下制得的CuO/SiO_2催化剂具有最优的表面酸性分布和最合适的表面微结构,从而在甘油脱水反应中表现出最佳的催化性能。  相似文献   

3.
3-羟基丙醛加氢制1,3-丙二醇催化剂的失活研究   总被引:1,自引:0,他引:1  
采用固定床连续流动反应器考察了Nj-M/HM催化剂在3-羟基丙醛两段加氢制1,3-丙二醇的一段加氢反应中的稳定性,利用X射线衍射、BET、热重-差热分析、电感耦合等离子体原子发射光谱、X射线荧光光谱和元素分析等方法对该催化剂的失活原因进行了研究。实验结果表明,在反应压力5.0 MPa、3-羟基丙醛液态空速2.0 h~(-1)、氢气与3-羟基丙醛摩尔比为8.0、反应温度50.0~72.0℃的条件下,催化剂连续运行3 300 h后失活。表征结果显示,催化剂失活后,分子筛骨架结构没有明显变化,比表面积和孔体积变化,表面有积碳且表面Nj物种有少量流失;催化剂失活的主要原因是低聚物的沉积,次要原因是表面活性组分Ni的流失。再生后催化剂的活性中心基本恢复到新鲜催化剂的水平。  相似文献   

4.
采用浸渍沉淀法制备了Ni/HY催化剂,用BET,FTIR,XRD,TEM,SEM,XPS,H2-TPR,H2-TPD等方法对催化剂进行了表征,并将其用于2,4-二硝基甲苯(2,4-DNT)液相加氢合成2,4-二胺基甲苯(2,4-TDA)反应,考察了反应条件对合成反应的影响。表征结果显示,Ni/HY催化剂的活性组分在载体表面以氧化镍的形式存在,在体相中以单质Ni的形式存在,在2,4-DNT加氢反应中活性组分基本没有流失。合成2,4-TDA的实验结果表明,Ni/HY催化剂具有较高的活性,在2,4-DNT用量5 g、反应时间1.25 h、m(乙醇)∶m(2,4-DNT)=50、m(催化剂)∶m(2,4-DNT)=0.10、反应压力2.2 MPa、搅拌转速750 r/min、反应温度90℃的条件下,2,4-DNT的转化率和2,4-TDA的选择性分别为99.88%和99.16%;该催化剂活性组分分散度高,稳定性好,循环使用3次后仍能保持良好的催化性能。  相似文献   

5.
α-呋喃甲酸在Ru-Pd/γ-Al_2O_3催化剂上加氢甲酯化   总被引:1,自引:1,他引:0  
以α-呋喃甲酸、甲醇、氢气为原料,Ru-Pd/γ-Al2O3为催化剂,在连续流动固定床微型反应器中α-呋喃甲酸一步加氢甲酯化生成α-四氢呋喃甲酸甲酯。考察了反应温度、反应压力、氢气及液态(α-呋喃甲酸的甲醇溶液)空速和进料流量对α-呋喃甲酸一步加氢甲酯化反应的影响。实验结果表明,在3.0MPa、200℃、氢气空速6 600h-1、液态空速3.0h-1、氢与α-呋喃甲酸的摩尔比为100时,α-呋喃甲酸的转化率为98.4%,α-四氢呋喃甲酸甲酯的选择性为98.8%,收率为97.2%。Ru-Pd/γ-Al2O3催化剂的稳定性较好,连续运转400h后活性未见下降。该催化反应体系活性高、选择性好、产物易分离、能连续操作,具有良好的应用前景。  相似文献   

6.
《石油化工》2016,45(6):664
在连续流动固定床反应器上,研究了Cu/SiO_2催化丙二酸二乙酯(DEM)加氢制备1,3-丙二醇(1,3-PDO)的反应。采用H_2-TPR、XRD、SEM、N_2吸附-脱附等方法对催化剂进行表征。进一步优化了原料液含量、氢酯摩尔比、液态空速、反应温度、反应压力等因素对反应结果的影响。表征结果显示,不同还原条件会影响Cu/SiO_2还原后活性铜的量及其分散状态;于300℃下还原4 h时,Cu/SiO_2催化剂的活性中心较多且分散均匀。实验结果表明,采用于300℃下还原4 h的Cu/SiO_2催化剂,在原料液含量7.5%(w)、氢酯摩尔比330、液态空速1.8 h-1、反应温度200℃、反应压力2.0 MPa的反应条件下,DEM的转化率为85.2%,产物1,3-PDO的收率为41.0%,副产物3-羟基丙酸乙酯的收率为32.9%。  相似文献   

7.
实验以水为反应介质,Pd/C为催化剂,OVN为助催化剂,以NaHSO3水溶液为处理剂,考察了Pd/C催化剂经预处理后,对催化加氢制备4,4′-二氨基二苯乙烯-2,2′-二磺酸(DSD酸)反应选择性的影响。实验结果表明,催化剂的预处理和助催化剂的添加,均可提高Pd/C催化加氢制备DSD酸反应的选择性。在较佳条件下,首次催化加氢所得产品DSD酸的收率可达95.77%,副产物苄基物的质量分数仅为0.31%。  相似文献   

8.
 采用浸渍沉淀法制备了Ni/MgO、Ni/HZSM-5、Ni/硅藻土、Ni/SiO2及Ni/HY催化剂,通过XRD、BET、TPR等分析手段对催化剂进行了表征,并将其应用于2,4-二硝基甲苯液相加氢制2,4-甲苯二胺反应。结果表明,在2.2 MPa、90℃、反应原料5 g、溶剂300 mL、催化剂0.5 g的条件下,这5种镍基催化剂催化2,4-二硝基甲苯液相加氢反应按2,4-甲苯二胺的选择性高低的排列顺序为Ni/HY、Ni/硅藻土、Ni/SiO2、Ni/HZSM-5、Ni/MgO,其中Ni/HY催化剂催化活性最高,2,4-二硝基甲苯转化率和2,4-甲苯二胺的选择性分别达到99.94%和99.40%,且在循环使用3次后仍能保持良好的催化活性。  相似文献   

9.
Pd-Ru/Al_2O_3催化剂上α-呋喃甲酸催化加氢反应的研究   总被引:6,自引:3,他引:3  
采用连续流动固定床微反装置考察了Pd-Ru/Al2O3催化剂上α-呋喃甲酸加氢生成α-四氢呋喃甲酸的反应,考察了反应温度、压力、空速以及氢气与α-呋喃甲酸的摩尔比对催化反应性能的影响。结果表明,在3.0MPa、150℃、氢气空速1500h-1、α-呋喃甲酸的乙酸乙酯溶液的空速3.0h-1、氢气与α-呋喃甲酸的摩尔比为50的条件下,α-呋喃甲酸的转化率为98.0%,α-四氢呋喃甲酸的选择性为99.0%,收率为97.0%。催化剂稳定性较好,连续运转400h未见活性下降。该催化剂反应活性高、选择性好、性能稳定、反应条件比较温和、操作简单、产物易分离,具有良好的应用前景。  相似文献   

10.
采用沉积沉淀法制备了CuO-ZnO/Al2O3和CuO-ZnO-MnOx/Al2O3催化剂。利用XRD、低温N2吸附、H2-TPR等手段对两种催化剂进行了表征。表征结果显示,Mn物种的引入不仅有效促进了Cu组分的分散,且能增强Cu的抗烧结能力,提高了活性组分的稳定性。利用常压高空速的催速失活实验对两种催化剂催化α,α-二甲基苄醇(DMBA)氢解的性能进行了比较,实验结果表明两种催化剂的初始活性相当,但CuO-ZnO-MnOx/Al2O3催化剂的稳定性更高。在入口温度170℃、出口温度220℃、H2压力2.0MPa、氢油体积比400、LHSV1.0h-1的条件下,用Mn与Cu摩尔比为0.2的CuO-ZnO-MnOx/Al2O3催化剂催化反应1000h,DMBA完全转化,异丙苯选择性大于96%。  相似文献   

11.
以3-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯(MPC)和三甘醇为原料,在无溶剂的条件下采用酯交换法合成双[3-(3,5二叔丁基-4-羟基)苯基]丙酸三甘醇酯。最佳合成条件为:在90℃加入有机锡催化剂,用量为MPC质量的2.3%;反应温度130℃;反应时间3.5 h;n(MPC):n(三甘醇)=2.10:1.00,在此条件下产物收率大于91%,产物熔点106~106.5℃。通过元素分析、红外光谱分析、~1H NMR分析对产物分子结构进行了表征。  相似文献   

12.
采用等体积浸渍法将Ni分别负载在USY,ZSM-5,SBA-15,Al2O3载体上制备Ni质量分数为17%的负载型镍基催化剂,分别用X射线衍射、N2吸附-脱附、H2程序升温还原以及NH3程序升温脱附对催化剂进行表征,并考察其在氢气压力为4MPa、反应温度为120℃、不同反应时间下催化1,4-丁炔二醇(BYD)加氢制1,...  相似文献   

13.
在溢流床反应器中研究了α-甲基苯乙烯于Pd/γ-Al2O3催化剂上加氢制异丙苯的宏观动力学,排除内扩散的前提下测定了不同反应条件下的动力学数据。选用幂函数型宏观动力学方程,以AMS转化率的实验值和计算值的残差平方和为目标函数,采用Levenberg-Marquart非线性最小二乘法对宏观动力学方程中参数进行优化,得到了AMS加氢宏观动力学模型参数。通过统计检验表明,实验值和计算值拟合良好。  相似文献   

14.
线性α-烯烃(LAOs)作为重要的化工原料,通常用于共聚单体、合成润滑油、增塑剂用醇和油品添加剂。以二氧化碳(CO2)和氢气(H2)作为原料,通过CO2加氢反应生产LAOs可以缓解温室效应、实现CO2高值化利用,具有重要意义。CO2加氢制LAOs一般包括逆水煤气变换(RWGS)和费托合成(FTS)两个步骤,四氧化三铁(Fe3O4)和碳化铁(χ-Fe5C2等)可分别催化RWGS和FTS反应,因此Fe基催化剂是当前的研究热点。介绍了Fe基催化剂的物相演变过程及其失活机制,重点分析了载体、助剂和表面改性对促进χ-Fe5C2活性相生成、调控Fe3O4/χ-Fe5C2比例(物质的量之比)和维持χ-Fe5C2相稳定的作用,总结了F...  相似文献   

15.
报道了由国产 2 ,6二叔丁基苯酚与多聚甲醛、亚磷酸三乙酯、水合氢氧化钠和氯化钙等经 4步反应合成了抗氧剂双 ( 3,5二叔丁基 4羟基苄基膦酸单乙酯 )钙盐。通过核磁、红外和元素分析证实了各步产物的结构。  相似文献   

16.
合成了S,S′-二(α,α′-甲基-α′′-乙酸)三硫代碳酸酯(TRIT),以TRIT为可逆加成-裂解链转移(RAFT)聚合反应的链转移剂,对苯乙烯(S t)和甲基丙烯酸甲酯(MMA)单体的热聚合反应和室温下光引发的聚合反应进行了研究,用凝胶渗透色谱、核磁共振(1H NMR)和傅里叶变换红外光谱(FTIR)等方法对热聚合反应和光聚合反应所得聚合物的结构和相对分子质量及其分布进行了表征。实验结果表明,聚合反应具有明显的活性特征,聚合物的相对分子质量分布较窄,相对分子质量随转化率的增加呈线性增加,ln[M]0/[M](M为单体)随聚合反应时间的延长也呈线性增加,聚合物分子链中含有三硫代碳酸酯基。根据1H NMR和FTIR的分析结果,初步提出了光聚合反应机理。  相似文献   

17.
冉蓉  何杰  于游  王跃川 《石油化工》2006,35(3):226-230
合成了S,S'-二(α,α'-甲基-α"-乙酸)三硫代碳酸酯(TRIT),以TRIT为可逆加成-裂解链转移(RAFT)聚合反应的链转移剂,对苯乙烯(St)和甲基丙烯酸甲酯(MMA)单体的热聚合反应和室温下光引发的聚合反应进行了研究,用凝胶渗透色谱、核磁共振(1H NMR)和傅里叶变换红外光谱(FTIR)等方法对热聚合反应和光聚合反应所得聚合物的结构和相对分子质量及其分布进行了表征.实验结果表明,聚合反应具有明显的活性特征,聚合物的相对分子质量分布较窄,相对分子质量随转化率的增加呈线性增加,1n[M]0/[M](M为单体)随聚合反应时间的延长也呈线性增加,聚合物分子链中含有三硫代碳酸酯基.根据1H NMR和FTIR的分析结果,初步提出了光聚合反应机理.  相似文献   

18.
以 3 (3’ ,5’ 二叔丁基 4 羟基苯基 )丙酸甲酯 (简称 3,5 甲酯 )与己二胺为原料 ,有机锡为催化剂 ,二甲苯为溶剂合成了N ,N’ 双 [3 (3’ ,5’ 二叔丁基 4’ 羟基苯基 )丙酰 ]六甲撑二胺。通过实验考察了反应温度、催化剂及催化剂用量、反应时间及物料配比等因素对反应的影响。结果表明 ,最佳的反应条件是 :反应温度 135~ 14 5℃ ,催化剂为有机锡 ,催化剂用量0 6 0 g ,反应时间 3 5h ,3,5 甲酯与己二胺摩尔比 2 10∶1。在此条件下 ,收率在 97%以上 ,放大到 10 0 0ml,收率在 99%以上 ,产品熔点为 16 1~ 16 2℃ ,产品纯度较高 ,通过元素分析、红外光谱分析、核磁氢谱对产品进行了结构表征  相似文献   

19.
研究了二苯并噻吩(DBT)和4-甲基二苯并噻吩(4-MDBT)在Mo/γ-Al2O3和CoMo/γ-Al2O3上加氢脱硫反应的产物分布及其可能的反应网络,并通过反应压力和温度对产物分布的影响,揭示了加氢脱硫反应的可能机理。DBT在Mo/γ-Al2O3上的加氢脱硫反应主要通过直接氢解路径和加氢路径进行,两种途径的作用相近;在CoMo/γ-Al2O3催化剂上的加氢脱硫主要通过直接氢解路径进行。4-MDBT在Mo/γ-Al2O3和CoMo/γ-Al2O3上的加氢脱硫反应主要通过加氢路径进行。Co的加入有助于提高Mo/γ-Al2O3催化剂的加氢脱硫活性,尤其是直接氢解脱硫活性。4-MDBT加氢脱硫反应中加氢路径的相对作用显著大于DBT加氢脱硫反应的加氢路径,间接证明4-MDBT的加氢脱硫过程存在对“端连吸附”的空间位阻。4-MDBT分子中甲基的供电子作用有利于促进苯环的加氢反应,从而有助于缩小与DBT分子间加氢脱硫活性的差别。在DBT和4-MDBT加氢脱硫反应中,反应压力和温度对加氢路径的影响大于对氢解路径的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号