首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
噻吩加氢脱硫反应中NiMo催化剂的研究   总被引:7,自引:6,他引:1  
采用连续流动微反装置,考察了催化剂载体、载体焙烧温度、催化剂制备方法及催化剂中Ni/Mo配比对NiMo催化剂催化噻吩加氢脱硫反应性能的影响,并用BET,XRD和TPR对催化剂进行了表征。结果表明,催化剂载体影响催化剂的性能,对于无Ni助剂的催化剂,负载在TiO2载体上的Mo催化剂活性高于负载在ZrO2上的催化剂,而助剂Ni的添加改变了活性顺序,使负载在TiO2载体上的NiMo催化剂活性低于负载在ZrO2上的催化剂;催化剂制备方法影响催化剂的性能,以共浸法制备的催化剂表现出高的催化活性;Ni/Mo配比影响催化剂的性能,当Ni/Mo摩尔比为0 6时,催化剂具有最高活性。  相似文献   

2.
分别采用均匀沉淀法、沉淀法和浸渍法制备了Ni/Al_2O_3催化剂,在常压固定床反应器中评价了Ni/Al_2O_3催化剂在乙醇水蒸气重整制氢反应中的性能;采用X射线衍射和低温N_2物理吸附法对Al_2O_3载体和Ni/Al_2O_3催化剂进行了表征;考察了载体焙烧温度及时间、催化剂制备方法、Ni负载量和催化剂还原时间等制备条件对Ni/Al_2O_3催化剂性能的影响。实验结果表明,以600℃下焙烧2 h的Al_2O_3为载体、采用浸渍法负载质量分数10.0%的Ni、在500℃焙烧1 h且在650℃下还原1 h的Ni/Al_2O_3催化剂的活性和选择性最好。在500℃、重时空速9 6 h~(-1)、水与乙醇的摩尔比为3:1的反应条件下,乙醇转化率达100%,产气速率为83.0 mL/min,H_2选择性为63.6%。  相似文献   

3.
以自制氧化石墨(GO)为原料,尿素为氮源,通过水热法制备了氮掺杂还原氧化石墨烯(N-rGO)载体,采用浸渍法制得不同镍负载量Ni/N-rGO催化剂,采用N2吸附-脱附、XRD、SEM等手段对Ni/N-rGO催化剂进行表征分析,考察催化剂制备条件(活性组分负载量、尿素添加量、H2还原温度)和反应条件(反应温度、反应压力、反应时间)对Ni/N-rGO催化剂催化苯酚选择性加氢制备环己酮的影响。结果表明:在活性组分负载质量分数为20%、尿素/GO质量比为30、H2还原温度为450 ℃的条件下制备的20%Ni/N-rGO催化剂具有较大的比表面积和适宜的孔结构,金属镍分散相对均匀;在反应温度为150 ℃、反应压力为0.4 MPa、反应时间为2.0 h、20%Ni/N-rGO催化剂/苯酚质量比为0.35的最佳条件下,苯酚转化率为91.93%,环己酮选择性为61.75%;20%Ni/N-rGO催化剂重复使用5次后催化性能下降较明显,苯酚转化率降至82.17%,环己酮选择性降至50.93%。  相似文献   

4.
负载杂多酸催化剂上的正丁烷异构化   总被引:4,自引:0,他引:4  
考察了 3种负载型杂多酸催化剂对正丁烷的异构化反应性能 ,揭示了杂多酸的酸性、不同载体、杂多酸负载量及负载Pt时对催化剂反应活性和稳定性的影响。结果表明 ,一种载Pt(质量分数 ) 0 2 %的PW /活性炭的双功能催化剂可使正丁烷的异构化选择性达 85 %以上 ,转化率达 2 3%以上  相似文献   

5.
利用共沉淀法制备了Ni/TiO2,Ni/ZnO,Ni/ZnO-TiO2,Ni-Cu/ZnO-TiO2催化剂,活性组分Ni及Cu含量均为2%(w);对催化剂进行了BET,H2-TPR,XRD,SEM-EDS表征及乙醇水蒸气重整制氢性能评价。实验结果表明,在水与醇摩尔比13、反应温度300~550℃、液态空速23.8 h-1的反应条件下,ZnO及ZnO-TiO2负载的Ni催化剂有较好的催化性能,当反应温度高于450℃时,乙醇转化率均达90%以上。在450~550℃,Ni-Cu/ZnO-TiO2催化剂的氢产率最高、CO选择性较低且稳定性良好,550℃时Ni-Cu/ZnO-TiO2催化剂上最大氢产率为3.49 mol/mol(每mol反应乙醇生产的H2的物质的量)。表征结果显示,Ni/ZnO,Ni/ZnO-TiO2,Ni-Cu/ZnO-TiO2催化剂的活性组分分散良好;采用复合载体ZnO-TiO2及添加第二种活性组分Cu,改善了Ni-Cu/ZnO-TiO2催化剂的性能;反应后4种催化剂上均有丝状炭生成,但未出现明显的烧结与团聚现象。  相似文献   

6.
白云石、橄榄石负载Ni催化剂的苯水蒸气转化性能研究   总被引:2,自引:1,他引:1  
胡冠  徐绍平  杜楹楠  刘淑琴 《石油化工》2004,33(Z1):847-849
以苯为模型化合物,研究了白云石、橄榄石负载Ni催化剂的苯水蒸气转化性能,考察了载体煅烧时间、载Ni量、水碳比S/C值和反应温度对其转化率及产气组成的影响.结果表明,载Ni量8%的白云石和5%的橄榄石获得了较好的性能.橄榄石负载Ni催化剂的机械强度和苯水蒸气转化反应活性明显优于白云石负载Ni催化剂,是生物质催化气化制氢性能优良的催化剂.  相似文献   

7.
以拟薄水铝石为原料制备了Al_2O_3,以活性炭(AC)和拟薄水铝石为原料采用机械混合法制备了AC-Al_2O_3,然后分别以Al_2O_3和AC-Al_2O_3为载体通过等体积浸渍法制备镍基催化剂。通过利用TG、BET、SEM对催化剂进行表征和在固定床反应装置上考察催化剂催化活性,研究了掺杂活性炭对催化剂活性的影响。结果表明:未掺杂活性炭的催化剂5Ni/Al_2O_3,CH_4转化率为62.3%,CO_2转化率为78.8%;未还原的掺杂活性炭的催化剂5NiO/AC-Al_2O_3,CH_4转化率为72.4%,CO_2转化率为84.8%;还原的掺杂活性炭的催化剂5Ni/AC-Al_2O_3,CH_4转化率为78.3%,CO_2转化率为88.7%。由此可知,掺杂在载体中的活性炭可以将NiO还原为单质Ni,活性炭的加入可以改善催化剂的催化活性。  相似文献   

8.
采用免焙烧的方法,直接将负载Ni(NO3)2和(NH4)2HPO4盐的前驱体通过程序升温还原(TPR)制备了Ni2P/SiO2加氢脱硫(HDS)催化剂。以质量分数为0.8%的二苯并噻吩/十氢萘溶液为模型化合物,考察了Ni2P/SiO2催化剂的HDS反应催化性能,并用XRD对催化剂进行了表征。结果表明,免焙烧法制备的Ni2P/SiO2催化剂的单层分散阈值在15%~25%(质量分数)之间。随负载量增加,Ni2P/SiO2催化剂的HDS活性增加,但直接脱硫路径(DDS)选择性降低;当活性组分负载量大于单层分散阈值时,继续增加负载量对催化剂粒度和反应性能影响不大。免焙烧法制备的Ni2P/SiO2催化剂的HDS活性与传统方法制备的催化剂相当(负载量大于单层分散阈值时)或更高(负载量小于单层分散阈值时),并且具有良好的反应稳定性。TPR过程中升温程序是影响免焙烧法制备的Ni2P/SiO2催化剂HDS性能的重要因素;低温阶段升温速率对催化剂性能没有明显影响,而在400℃停留一段时间则有利于提高其活性。  相似文献   

9.
《石油化工》2015,44(4):446
采用低温中和法制备负载型Ni2P/Ti O2-Al2O3催化剂和水热合成法制备Ni2P催化剂,采用XRD技术对两种催化剂进行表征。在小型连续固定床反应器上,以二苯并噻吩和正十二烷的混合液为模型化合物,考察Ni2P/Ti O2-Al2O3和Ni2P催化剂的加氢脱硫性能。实验结果表明,制备Ni2P/Ti O2-Al2O3催化剂的适宜条件为:合成次磷酸镍的反应温度50~55℃、n(P)∶n(Ni)=2.2、溶液p H=2.5、载体n(Ti)∶n(Al)=1∶4、Ni2P的负载量为25%(w),在此条件下制备的Ni2P/Ti O2-Al2O3催化剂的加氢脱硫活性可达97.1%;利用乙二醇-水混合溶液为溶剂,制备非负载型Ni2P催化剂,加氢脱硫活性较高,达到97.9%;综合对比两种催化剂,负载型Ni2P/Ti O2-Al2O3催化剂的性价比更高。  相似文献   

10.
采用浸渍法制备了一系列负载型Fe-Ni催化剂,利用固定床反应器对该系列催化剂在乙酸水蒸气重整制氢反应中的催化性能进行了评价,研究了催化剂中Fe与Ni的摩尔比、载体种类、活性组分负载量、反应温度及液态空速对催化剂性能的影响。实验结果表明,在4种载体(Al_2O_3,ZrO_2,SiO_2,TiO_2)负载的Fe-Ni催化剂中,Fe-Ni/Al_2O_3催化剂表现出最高的活性和选择性;当Fe与Ni的摩尔比为0.25:1、Fe-Ni负载量(摩尔分数)为15%、水与碳摩尔比为7.5:1、液态空速为4.8 h~(-1)、反应温度为350℃时,可使乙酸完全转化,并且反应温度为600℃时H_2选择性高达96.2%。  相似文献   

11.
复合载体Ti系催化剂的乙烯均聚和共聚   总被引:4,自引:2,他引:4  
研究了乙烯气相均聚、共聚合的复合载体钛系高效催化剂。催化剂基本组份为TiCl4 /ZnCl2 -MgCl2 -SiO2 /AlR3,各组份质量分数为Ti:1 8%~ 2 7% ,Mg2 + :3 0 %~ 4 0 %、Zn2 + :3 5%~ 5 1 %、SiO2 :51 %~ 66%。探讨了催化剂制备条件对聚合性能的影响 ,常压下乙烯气相均聚、共聚合催化效率 6960~ 1 2 1 0 0g/ g ,表观密度 0 3 3~ 0 4 2 g/cm3,2 0~ 2 0 0目聚合物颗粒质量分数为 98%。Φ1 0 0流化床共聚合 ,在 1 0MPa压力下 ,催化效率 4 45~ 887kg/ g ,聚合物MI2 16 为 0 2 6~ 50g/ 1 0min ,熔体流动速率比值MI2 1 6 /MI2 16 为 2 2 7~ 4 7 0 ,熔点 99 6~ 1 2 5℃ ,结晶度 2 0 %~4 9% ,密度 0 880~ 0 92 8g/cm3,支化度 1 1 0~ 4 7 5,该催化剂可制备LLDPE和ULLDPE。  相似文献   

12.
浆态床合成气制二甲醚的宏观动力学研究   总被引:17,自引:1,他引:17  
在甲醇合成与甲醇脱水催化剂比例为 5、催化剂浓度为 1 0 g/30 0ml液体石蜡、温度 2 50~ 2 80℃、压力 3~5MPa、气体空速 40 0 0~ 70 0 0ml/( g·h)条件下 ,建立了浆态床合成气制二甲醚宏观动力学模型 ;甲醇合成反应和甲醇脱水反应的活化能分别为 1 4 1kJ/mol和 2 3 5kJ/mol,甲醇摩生成速率的计算值与实验值的相对误差在 1 3 6%和2 2 %以内 ;动力学方程为r2D +M=k1 pCO1 954pH20 91 74/[( 1 +KCOpCO1 50 1 +KCO2 pCO20 1 795) 2 2 60 ]、rD=k2 pM0 940 2 /[( 1+KMpM1 739+KH2 OpH2 O2 2 4 3) 0 441 5]。  相似文献   

13.
在固定床流动反应装置上考察了不同反应条件对Ca 调变Ni 基催化剂反应性能的影响。结果表明,当空速< 2-0 ×105h - 1 时,随空速增加,反应性能也增加;当空速> 2-0 ×105h - 1 时,空速对反应性能的影响较小;当 V(CH4)/ V(O2) = 1-8 ~2-1 时,V(CH4)/ V(O2) 比减小,甲烷转化率增加、CO 及H2 选择性变化不大;当 V(CH4)/ V(O2) > 2-1 时,增加 V(CH4)/ V(O2) 比,反应性能很快下降。在催化剂床层入口端加入少量贵金属Rh 催化剂可显著地降低反应的引发温度,反应性能不受影响。合适的高径比有利于提高反应性能,当高径比为0-3 ~0-6 时有最佳的反应性能,在空速为2-0 ×105h - 1 ,V(CH4)/ V(O2) = 2-0 ,Tm = 900 ℃时,X(CH4) > 96 % ,S(CO) > 95 % ,S(H2) > 99 % 。  相似文献   

14.
乙烯气相聚合Ziegler负载型催化剂的研究   总被引:1,自引:0,他引:1  
张启兴  杨萱  吴杲  王海华 《石油化工》2003,32(2):116-120
研究了组分为TiCl4/MgCl2-ZnCl2-SiO2/AlR3的Ziegler负载型催化剂的聚合活性,并分析了催化剂的基本组成。结果表明,淤浆聚合催化活性9 7~14kg/g,气相聚合催化活性6 9~14kg/g,聚合产物堆密度0 23~0 30g/cm3,20~200目颗粒质量分数为90%~95%。乙烯与1-丁烯共聚合催化活性大大提高,丁烯质量分数为10%时,催化活性高达26kg/g,共聚产物熔点、结晶度随1-丁烯含量增加而下降,而支化度则随之上升。  相似文献   

15.
用紫外可见吸收光谱法研究低代端氨基树枝状大分子G1.0(NH2)3,G1.5(NH2)8和Cu2+之间的作用。与单组分溶液相比,Cu2+/树枝状大分子双组分溶液的紫外吸收光谱峰形变宽,最大吸收波长红移,吸光度增大,且出现了可见光区吸收,表明在水溶液中,低代端氨基树枝状大分子和Cu2+之间存在络合作用。随着Cu2+与树枝状大分子摩尔比或Cu2+浓度的增加,最大吸收波长红移,吸光度增大。pH值对络合有很大影响,酸性条件下可见光区吸收消失,说明Cu2+/树枝状大分子络合物解离。透射电镜照片显示Cu2+/G1.5 (NH2)8络合体系比Cu2+/G1.0(NH2)3络合体系更加均匀,而聚集体粒径较大。在较宽的浓度范围内,两体系都能稳定存放180 d以上。一个G1.0(NH2)3和G1.5(NH2)8分子最多分别能络合5和7个Cu2+。  相似文献   

16.
液相法酯化合成马来酸二丁酯是典型的酸催化反应。本论文研制了系列γ Al2O3系、硅铝系催化剂,用于马来酸二丁酯的合成;考察了催化剂种类和制备工艺,以及反应工艺条件的影响。实验结果表明:以并加法制备的SiO2/Al2O3(x(Si)/x(Al)=1/1,沉淀pH值6 0)催化效果最好,在120℃、催化剂用量为1 0g、n(酸)/n(醇)=1/4下,反应3h,马来酸转化率达73 31%。  相似文献   

17.
一种新型水驱特征曲线方程的推导及应用   总被引:8,自引:1,他引:7  
针对累积产水量与累积产油量的半对数关系和西帕切夫公式在使用中存在的问题,基于油层物理学中有关油田综合含水率的计算公式fw=1/(1+μwKr0/μ0Krw),经理论推导提出了一种新的水驱特征曲线描述方程Np=A2+(A0+A1A2)/(Lp-A1),经实例验证是可行的。  相似文献   

18.
Nickel catalyst is an effective catalyst for reforming CH4 with CO2. The reaction between CO2 and CH4 at 1073 K. in the pressure of 0·1 MPa has been studied over different materials supported nickel metal in a fixed-bed reactor. Different catalysts before and after reaction were characterized by SEM, XRD, XPS. Results shows that CO and H2 are basically produced at the same ratio. When the feed ratio CO2/CH4 is less than 0·5, less C2~C4 hydrocarbons are detected. When the feed ratio CO2/CH4 is 1, Ni/a- Al2O3 catalyst has the highest activity. However, when the feed ratio CO2/CH4 is greater than 1, Ni/y- A1/O3, Ni/a- A12O3, Ni/SiO2 and Ni/HZSM-5 had higher activity; Ni/clinoptilolite basically no activity. Different kinds of carbon deposit are established.  相似文献   

19.
优化乙烷与二氧化碳反应制乙烯的反应条件 ,考察反应条件对K Fe Mn/Si 2催化剂反应制乙烯性能的影响 ;并在 80 0℃、0 1MPa、1 0 0 0h-1、V(C2 H6 ) /V(CO2 ) /V(H2 O) =1 / 1 / 0 5的反应条件下 ,进行了K Fe Mn/Si 2和K Cr Mn/Si 2催化剂的寿命考察 ,表明K Fe Mn/Si 2催化剂具有很好的乙烷与二氧化碳反应稳定性 ,K Cr Mn/Si 2催化剂的反应稳定性较差 ;通过对催化剂再生性能的考察 ,发现K Fe Mn/Si 2催化剂具有很好的再生性能 ,而积炭的K Cr Mn/Si 2催化剂较难再生。  相似文献   

20.
Six different metals as active components of catalyst for dehydrogenation of ethylbenzene were supported over TiO2 using isovolumetric impregnation method. In the bench scale experiment at 623 K an effective catalyst V1/TiO2 was found, 18.8% ethylbenzene with 100% styrene selectivity acquired. Various characterization techniques, physisorption, SEM/EDX, XRD, TGA, and particle size analyzer, were employed to analyze the features of catalysts. Results showed that lower calcined temperatures helped to increase the selectivity of styrene when V1/TiO2 was calcined at 523 K while the reaction temperature was 623 K. The pore distribution was concentrated and the growth of active components crystalline grains in V1/TiO2 catalyst could be effectively controlled when it was calcined in lower temperature during preparation. The agglomeration of V on the surface of V1/TiO2 catalyst during reaction leads to the decrease of ethylbenzene conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号