首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Optical, electrical and structural properties of argon (Ar) ion-irradiated buckypapers of multi-walled carbon nanotube (MWCNT) at various doses prepared by a vacuum filtration method were investigated. It was found that the direct current (DC) conductivity and absorption spectra in the visible range were decreased with an increasing Ar ion irradiation dose. A subsequent heating of nanotube buckypapers at 800 K in a vacuum at each irradiation dose improved the conductivity of buckypapers, whereas optical absorption was unchanged. Moreover, the graphite structure of MWCNTs was transformed to amorphous structure with an increasing Ar ion irradiation dose. The decrease of optical absorption and electrical conductivity of MWCNT buckypaper at room temperature can be ascribed to the increase of defects in the irradiated MWCNTs.  相似文献   

2.
L Zhang  G Zhang  C Liu  S Fan 《Nano letters》2012,12(9):4848-4852
High-density buckypapers were obtained by using well-aligned carbon nanotube arrays. The density of the buckypapers was as high as 1.39 g cm(-3), which is close to the ultimate density of ideal buckypapers. Then we measured the transport and mechanical properties of the buckypapers. Our results demonstrated that its electrical and thermal conductivities could be almost linearly improved by increasing its density. In particular, its superior thermal conductivity is nearly twice that of common metals, which enables it a lightweight and more efficient heat-transfer materials. The Young's modulus of the buckypapers could reach a magnitude over 2 GPa, which is greatly improved compared with previous reported results. In view of this, our work provided a simple and convenient method to prepare high-density buckypapers with excellent transport and mechanical properties.  相似文献   

3.
Chen Y  Miao HY  Lin RJ  Zhang M  Liang R  Zhang C  Wang B 《Nanotechnology》2010,21(49):495702
Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm(-2), which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.  相似文献   

4.
This paper reports the alignment of multi-walled carbon nanotubes (MWCNTs) in an epoxy matrix as a result of DC electric fields applied during composite curing. Optical microscopy and polarized Raman spectroscopy are used to confirm the CNT alignment. The alignment of CNTs gives rise to much improved electrical conductivity, elastic modulus and quasi-static fracture toughness compared to those with CNTs of random orientation. An extraordinarily low electrical percolation threshold of about 0.0031 vol% is achieved when measured along the alignment, which is more than one order of magnitude lower than 0.034 vol% with random orientation or that measured perpendicular to the aligned CNTs. The examination of the fracture surfaces identifies pertinent toughening mechanisms in aligned CNT composites, namely crack tip deflection and CNT pullout. The significance of this paper is that the technique employed here can tailor the physical, mechanical and fracture properties of bulk nanocomposites even at a very low CNT concentration.  相似文献   

5.
Using a π-orbital tight-binding model, we investigate the transport properties of a coiled carbon nanotube (also called carbon nanotube spring), which we construct by connecting carbon nanotubes periodically in three-dimensional (3D) space. The conductance is quantized due to the translational symmetry in the coiled direction. However, the conductance behaviors differ greatly from those of pristine metallic carbon nanotubes but similar to those of carbon nanotube superlattices. We explain that conductance behaviors of the coiled carbon nanotube.  相似文献   

6.
Yu C  Shi L  Yao Z  Li D  Majumdar A 《Nano letters》2005,5(9):1842-1846
We have observed experimentally that the thermal conductance of a 2.76-microm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductance of a 1-nm-diameter SWCNT without showing signatures of phonon-phonon Umklapp scattering for temperatures between 110 and 300 K. Although the observed thermopower of the SWCNT can be attributed to a linear diffusion contribution and a constant phonon drag effect, there could be an additional contact effect.  相似文献   

7.
碳纳米管水泥基复合材料电学性能数值模拟   总被引:1,自引:0,他引:1  
采用ANSYS12.0和蒙特卡洛随机方法构建了碳纳米管水泥基复合材料的有限元模型,并基于有限元法分析了碳纳米管长径比、直径和掺量对复合材料有效电阻率的影响,并在此基础上通过有效介质方程对有效电阻率数值解和电阻率实验值进行了拟合。数值计算结果表明,碳纳米管水泥基复合材料有效电阻率的有限元解与解析解较为一致,证明采用有限元法进行电学分析具有可行性;碳纳米管水泥基复合材料有效电阻率随碳纳米管掺量和碳纳米管长径比增加而减小,随着碳纳米管直径的减小而减小;有效介质方程对碳纳米管水泥基复合材料有效电阻率实验值和有限元数值解拟合曲线变化趋势是一致的。  相似文献   

8.
9.
Pop E  Mann D  Wang Q  Goodson K  Dai H 《Nano letters》2006,6(1):96-100
The thermal properties of a suspended metallic single-wall carbon nanotube (SWNT) are extracted from its high-bias (I-V) electrical characteristics over the 300-800 K temperature range, achieved by Joule self-heating. The thermal conductance is approximately 2.4 nW/K, and the thermal conductivity is nearly 3500 Wm(-1)K(-1) at room temperature for a SWNT of length 2.6 mum and diameter 1.7 nm. A subtle decrease in thermal conductivity steeper than 1/T is observed at the upper end of the temperature range, which is attributed to second-order three-phonon scattering between two acoustic modes and one optical mode. We discuss sources of uncertainty and propose a simple analytical model for the SWNT thermal conductivity including length and temperature dependence.  相似文献   

10.
Carbon-nanotube-based electronics offers significant potential as a nanoscale alternative to silicon-based devices for molecular electronics technologies. Here, we show evidence for a dramatic electrical switching behaviour in a Y-junction carbon-nanotube morphology. We observe an abrupt modulation of the current from an on- to an off-state, presumably mediated by defects and the topology of the junction. The mutual interaction of the electron currents in the three branches of the Y-junction is shown to be the basis for a potentially new logic device. This is the first time that such switching and logic functionalities have been experimentally demonstrated in Y-junction nanotubes without the need for an external gate. A class of nanoelectronic architecture and functionality, which extends well beyond conventional field-effect transistor technologies, is now possible.  相似文献   

11.
采用双向电泳法,在原子力显微镜探针尖端组装了单根碳纳米管,在真空环境下对比测量了单根碳纳米管蒸镀低逸出功材料HfC前后场致发射电流曲线和电流噪声的特点。证明了HfC蒸镀在碳纳米管上能够显著降低发射体的逸出功,减少电流噪声,并且观察到单根碳纳米管蒸镀了HfC后7μA左右的稳定电流发射。通过分析电流噪声,认为碳纳米管场致发射噪声主要来自吸附气体的频繁吸附和脱附。在低电流下,空间电离的离子轰击发射体表面,对吸附状态的影响占主导地位。当单根碳纳米管的场致发射电流超过1μA量级以后,碳纳米管表面温度快速升高,温度对气体吸附的影响占主导地位,吸附的气体分子逐渐脱附后,电流噪声开始降低。  相似文献   

12.
The piezoresistance of a multi-walled carbon nanotube filled silicone rubber composite under uniaxial pressure was studied. The experimental results show that the active carboxyl radical on multi-walled carbon nanotubes can effectively improve the homogeneous distribution and alignment of conductive paths in the composite. As a result, the composite presented positive piezoresistance with improved sensitivity and sensing linearity for pressure, both of which are key parameters for sensor applications.  相似文献   

13.
The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.  相似文献   

14.
Vinyl ester resins are often utilized in advanced naval composite structures due to the relatively low viscosity of the resin and the capability to cure at ambient temperatures. These qualities facilitate the production of large naval composite structures using resin infusion techniques. Vinyl ester monomer was synthesized from the epoxy resin to overcome processing challenges associated with volatility of the styrene monomer in vinyl ester resin. In this research we have investigated the use of a calendering approach for dispersion of multi-walled carbon nanotubes in vinyl ester monomer, and the subsequent processing of nanotube/vinyl ester composites. The high aspect ratios of the carbon nanotubes were preserved during processing and enabled the formation of a conductive percolating network at low nanotube concentrations. An electrical percolation threshold below 0.1 wt.% carbon nanotubes in vinyl ester was observed. Formation of percolating carbon nanotube networks at low concentration holds promise for the utilization of carbon nanotubes as in situ sensors for detecting deformation and damage in advanced naval composites.  相似文献   

15.
16.
Individual carbon nanotube (CNT) field emission characteristics present a number of advantages for potential applications in electron microscopy and electron beam lithography. Mechanical and electrical reliability of individual CNT cathodes, however, remains a challenge and thus device integration of these cathodes has been limited. In this work, we present an investigation into the reliability issues concerning individual CNT field emission cathodes. We also introduce and analyze the reliability of a novel individual CNT cathode. The cathode structure is composed of a multi-walled carbon nanotube (MWNT) attached by Joule heating to a nickel-coated Si microstructure. The junction of the CNT and the Si microstructure is mechanically and electrically robust to withstand the strong electric field conditions that are typical for field emission devices. An optimal Ni film coating of 25?nm on the Si microstructure is required for mechanical and electrical stability. Experimental current-voltage data for the new cathode structure definitively demonstrates carbon nanotube field emission. Additionally, we demonstrate that our new nanofabrication method is capable of producing sophisticated cathode structures that were previously not realizable, such as one consisting of two parallel MWNTs, with highly controlled CNT lengths with 40?nm accuracy and nanotube-to-nanotube separations of less than 10?μm.  相似文献   

17.
The electrical properties of polymer nanocomposites containing a small amount of carbon nanotube (CNT) are remarkably superior to those of conventional electronic composites. Based on three-dimensional (3D) statistical percolation and 3D resistor network modeling, the electrical properties of CNT nanocomposites, at and after percolation, were successfully predicted in this work. The numerical analysis was also extended to investigate the effects of the aspect ratio, the electrical conductivity, the aggregation and the shape of CNTs on the electrical properties of the nanocomposites. A simple empirical model was also established based on present numerical simulations to predict the electrical conductivity in several electronic composites with various fillers. This investigation further highlighted the importance of theoretical and numerical analyses in the exploration of basic physical phenomena, such as percolation and conductivity in novel nanocomposites.  相似文献   

18.
We review experimental and theoretical work on electrical percolation of carbon nanotubes (CNT) in polymer composites. We give a comprehensive survey of published data together with an attempt of systematization. Parameters like CNT type, synthesis method, treatment and dimensionality as well as polymer type and dispersion method are evaluated with respect to their impact on percolation threshold, scaling law exponent and maximum conductivity of the composite. Validity as well as limitations of commonly used statistical percolation theories are discussed, in particular with respect to the recently reported existence of a lower kinetic (allowing for re-aggregation) and a higher statistical percolation threshold.  相似文献   

19.
Carbon nanotubes (CNTs) possess exceptional mechanical properties and are therefore suitable candidates for use as reinforcements in composite materials. The CNTs, however, form complicated shapes and do not usually appear as straight reinforcements when introduced in polymer matrices. This results in a decrease in nanotube effectiveness in enhancing the matrix mechanical properties. In this paper, theory of elasticity of anisotropic materials and finite element method (FEM) are used to investigate the effects of CNT helical angle on effective mechanical properties of nanocomposites. Helical nanotubes with different helical angles are modeled to investigate the effects of nanotube helical angle on nanocomposite effective mechanical properties. In addition, the results of models consisting of helical nanotubes are compared with the effective mechanical properties of nanocomposites reinforced with straight nanotubes. Ultimately, the effects of helical CNT volume fraction on nanocomposite longitudinal modulus are investigated.  相似文献   

20.
Amine-terminated self-assembled monolayers (SAMs) have been shown to selectively adsorb semiconducting single-walled carbon nanotubes (sc-SWNTs). Previous studies have shown that when deposited by spin coating, the resulting nanotube networks (SWNTnts) can be strongly influenced by the charge state of the amine (primary, secondary, and tertiary). When the amine surfaces were exposed to varying pH solutions, the conductivity and overall quality of the resulting fabricated networks were altered. Atomic force microscopy (AFM) topography had shown that the density of the SWNTnts was reduced as the amine protonation decreased, indicating that the electrostatic attraction between the SWNTs in solution and the surface influenced the adsorption. Simultaneously, μ-Raman analysis had suggested that when exposed to more basic conditions, the resulting networks were enhanced with sc-SWNTs. To directly confirm this enhancement, Ti/Pd contacts were deposited and devices were tested in air. Key device characteristics were found to match the enhancement trends previously observed by spectroscopy. For the primary and secondary amines, on/off current ratios were commensurate with the Raman trends in metallic contribution, while no trends were observed on the tertiary amine (due to weaker interactions). Finally, differing SWNT solution volumes were used to compensate for adsorption differences and yielded identical SWNTnt densities on the various pH-treated samples to eliminate the influence of network density. These results further the understanding of the amine-SWNT interaction during the spin coating process. Overall, we provide a convenient route to provide SWNT-based TFTs with highly tunable electronic charge transport through better understanding of the influence of these specific interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号