首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
利用模拟深水井筒实验设备开展了有机聚合物类钻井液添加剂用于抑制天然气水合物形成的室内实验.通过实验获得SD-102和XY-28添加剂在不同浓度下的作用结果,结果表明,在深水钻井过程中加入一定浓度的XY-28在延迟天然气水合物的形成方面效果微弱,而SD-102在抑制天然气水合物形成方面没有任何效果.  相似文献   

2.
利用模拟深水井筒实验设备开展了一系列在钻井液中添加降滤失剂LV-CMC用于抑制天然气水合物形成的室内实验,通过实验获得了该添加剂在不同浓度、不同初始压力情况下的作用结果。结果表明,在深水钻井过程中加入一定浓度的LV-CMC,可以延迟天然气水合物的形成,证明LV-CMC具有抑制天然气水合物形成的作用,并且其浓度越大,抑制效果越明显。  相似文献   

3.
深水钻井中,极易在钻井液中生成天然气水合物,给深水钻井带来极大的危害。气体组成不同,形成水合物的条件也不相同,给深水钻井中水合物的防治带来较大的困难。利用研发的钻井液中天然气水合物形成抑制试验装置,研究了3种不同组成的气体在2种水基钻井液中形成天然气水合物的动力学过程。研究表明,在实验的3种气体中,绿峡谷气最易形成水合物,简单混合气次之,而甲烷气体最难形成水合物;相同条件下,同种气体在不同的钻井液中水合物生成具有明显的差异,因此必须对钻井液体系相平衡条件进行测试,并优选有效的水合物抑制剂。对于烷烃来说,分子量越大,越易于生成天然气水合物。  相似文献   

4.
深水油基钻井液中抑制水合物形成的实验研究   总被引:2,自引:2,他引:0  
在温度为4℃、压力为20MPa条件下,利用水合物综合模拟实验系统,对用于南海深水钻井的油基钻井液体系进行了抑制水合物生成的评价实验。结果表明,由于天然气在油相中的溶解度远高于在水中的溶解度,油基钻井液又是分散的乳化液,使得油基钻井液中水合物形成的诱导时间比水基钻井液中少。因此含水的油基钻井液体系在深水环境下(高压和低温)很容易生成天然气水合物,含水量越高,生成的量越大。所以在钻井作业过程中,要适当降低泥浆中水的含量,增加泥浆密度,防止地层水和气大量进入井内随油基钻井液一起循环。高浓度乙二醇能较好地抑制油基钻井液中水合物的形成。为了达到最佳抑制效果,可在钻井液中配合加入适量聚合醇与无机盐。  相似文献   

5.
分析了琼东南深水区域的地质和复杂情况,确定该区域潜在着海底页岩稳定性差、安全密度窗口窄、钻井液低温增黏、浅层气和天然气水合物等情况.在研究深水钻井液低温流变性能和深水钻井液中水合物生成的影响因素的基础上,通过室内实验构建了一套适合琼东南深水钻井的水基强抑制环保型钻井液.室内评价结果表明,该体系的低温流变性能好;抑制能力比油基钻井液略差,但远高于其他水基钻井液;能抑制天然气水合物的生成,保证在1500~2000 m水深条件下静置5d无水合物生成;抗污染能力强,满足琼东南深水钻井的需要.  相似文献   

6.
深水海底钻进泥浆中使用的天然气水合物抑制剂   总被引:10,自引:0,他引:10  
1 引言 在深水(水深大于300m)海底钻进过程中常会有天然气水合物形成.钻井泥浆中一旦有天然气水合物形成,将会对钻井工程和设备造成严重危害.目前解决的办法主要是在泥浆体系中加入抑制剂来抑制天然气水合物的形成.关于这方面的研究成果目前国内尚未见到,本文主要对近10年来国外在天然气水合物抑制剂的类型、作用机理及相关泥浆体系等方面的研究成果作一综述.  相似文献   

7.
针对海洋深水钻井过程中可能出现的气体水合物影响问题,对目前海洋常用的水基钻井液体系抑制气体水合物形成能力以及不同处理剂对气体水合物生成温度和压力的影响进行了研究,并构建和评价了适合于深水钻井的高盐聚胺钻井液体系.研究结果表明,盐类和醇类处理剂能有效抑制气体水合物的生成,高盐聚胺钻井液体系能满足深水钻井的需要.  相似文献   

8.
应用DSC技术评价深水钻井液气体水合物抑制性   总被引:1,自引:0,他引:1  
在海洋深水钻探过程中,低温高压条件易促成气体水合物的形成,对钻井作业带来很大的危害,必须加以预防.预防气体水合物危害的通常方法是在深水钻井液中加入水合物抑制剂增强其水合物抑制能力,这就需要对深水钻井液的抑制性有一个合理的评价.用传统评价水合物抑制剂的PVT技术来评价钻井液存在一定的不足.介绍了一种评价深水钻井液气体水合物抑制性的新方法--DSC技术,并阐述了其技术原理,同时评价了室内开发的适合于深水钻井的水基钻井液体系的水合物抑制性能.  相似文献   

9.
深水钻井液中水合物抑制剂的优化   总被引:5,自引:0,他引:5  
徐加放  邱正松  何畅 《石油学报》2011,32(1):149-152
深水钻井遇到的重大潜在危险因素之一是浅层气所引起的气体水合物问题。气体水合物稳定存在于低温、高压条件下,如果在深水钻井管线中生成,会造成气管、导管、隔水管和海底防喷器等的严重堵塞,且不易解除,从而危及工程人员和钻井平台的安全。利用新研制的天然气水合物抑制性评价模拟实验装置,初步探索了搅拌条件、膨润土含量及钻井液添加剂对气体水合物生成的影响规律。研究表明,搅拌和膨润土的存在可以促进水合物的生成,而多数钻井液添加剂则对水合物的生成有一定抑制作用。研究了常用水合物抑制剂作用效果,实验表明,动力学抑制剂不能完全抑制水合物的生成,其最佳加量为1.5%;热力学抑制剂虽能最终抑制水合物的生成,但加量较大,NaCl抑制效果好于乙二醇;动力学与热力学抑制剂复配具有很好的协同作用。在实验基础上优选了适合于3 000 m水深的深水钻井液用水合物抑制剂配方。  相似文献   

10.
深水钻井井筒中天然气水合物生成区域预测   总被引:12,自引:1,他引:11  
综合考虑天然气水合物生成热力学、温度和压力条件,预测深水钻井井筒中天然气水合物生成区域.针对深水钻井的特点,建立了多相流控制方程组(包括各相的连续性方程和动量守恒方程)、环空和钻杆内的温度场方程以及水合物生成热力学方程.针对不同的钻井工况给出了方程的定解条件、方程离散方法以及求解步骤.通过仿真算例讨论了在钻进、停钻和压井过程中相关参数对天然气水合物生成区域的影响规律.结果表明:循环流量越高,抑制剂浓度越大,停钻时间越短,节流管线尺寸越大,水合物的生成区域就越小.算例研究还表明,多因素相结合抑制水合物生成的效果比单因素抑制水合物生成的效果更好.依据此计算方法还可对各参数进行优化.图7参16  相似文献   

11.
用高压微量热仪评价深水钻井液气体水合物抑制性   总被引:2,自引:0,他引:2  
评价水合物生成的传统方法一般存在需要大型设备、实验周期长、精确性差等问题,为此建立了一种评价深水钻井液气体水合物抑制性的新方法——DSC技术。在了解气体水合物生成环境、对深水钻井的危害及传统评价方法的基础上,利用高压微量热仪的特点,研究了甲烷气体在不同液体介质中生成气体水合物的规律,建立了钻井液气体水合物抑制性评价方法,给出了用DSC技术评价盐水和深水钻井液气体水合物抑制性实例。研究表明,用高压微量热仪测试钻井液水合物抑制性的方法快捷、方便、准确,测试结果与传统方法吻合,深水水基钻井液体系具有较好的水合物抑制性能。  相似文献   

12.
天然气水合物热力学抑制剂作用机制及优化设计   总被引:4,自引:0,他引:4  
基于2种典型天然气水合物生成预测理论模型,结合水合物热力学抑制剂评价实验数据以及水活度测试结果,分析了水合物热力学抑制剂影响天然气水合物生成条件的作用机制,建立了水合物生成温度降低值与水活度的关系式。结果表明,水合物热力学抑制剂降低水合物生成温度,或提高水合物生成压力的作用机制是降低溶液的水活度,其抑制水合物生成效果随水活度的降低线性增加。通过模拟深水钻井环境,对 典型的水合物热力学抑制剂氯化钠,以及钻井液常用的有机盐甲酸钠进行了水活度测试以及水合物抑制效果评价实验,探讨了可降低钻井液水活度的有机盐加重剂Weigh作为水合物抑制剂的可能性。结果表明,加入氯化钠或甲酸钠降低水活度至0.84,钻井液可在1 500 m水深条件下循环16 h无水合物生成 ;Weigh可大幅降低溶液水活度,水合物抑制效果优于氯化钠、甲酸钠以及由氯化钠和乙二醇组成的复合抑制剂。针对深水钻完井作业中遇到的必须使用低密度钻井液或完井液的情况,初步优化设计了低密度水合物抑制剂,可保证钻井液和完井液在低密度条件下(1.05~1.07 g/cm3)有效抑制水合物生成。  相似文献   

13.
天然气水合物抑制过程中甲醇用量的影响   总被引:6,自引:4,他引:2  
采用可视化高压流体测试装置,考察了甲醇含量对陕北某气田天然气水合物生成条件的影响。实验结果表明,气体组成对其水合物的生成条件有较大的影响,大分子气体或液态烃的存在可显著降低水合物的生成压力;甲醇含量对水合物生成的温度降有较大影响,甲醇含量越高,水合物生成温度降越大;水合物生成压力的对数(lgp)与温度(t_e)呈线性关系,不同甲醇含量时水合物生成条件的lgp~t_e曲线相互平行;甲醇质量分数小于30%时,Hammerschmidt方程和Nielsen-Bucklin方程对水合物生成温度降的预测偏差较小,但甲醇质量分数大于30%时,预测偏差较大;采用Nielsen-Bucklin修正式,预测甲醇用量的偏差小于2%。  相似文献   

14.
添加剂对CO2水合物生成的影响   总被引:3,自引:0,他引:3  
以水合物的方式分离/储存CO2气体是一项具有挑战性的新技术。为了提高水合物的生成速率和储气密度,在小型可视化的水合物反应装置上实验研究了不同种类的添加剂对CO2水合物生成特性的影响。结果表明,实验用有机硅系列添加剂可以有效降低气-水界面的表面张力,提高水合物的生成速率。CO2水合物的生成量随着添加剂浓度的增大而增大,但当浓度高于0.1%以后,其生成量增长非常缓慢。单组分添加剂Silwet L-77效果最好,而单组分添加剂THF对CO2水合物的生成没有任何改善,但将浓度为4%的THF和1%的Silwet L-77混合后却对水合物的生成起到了显著的改善效果,12 h内的气体压降可达到0.27 MPa,是纯水体系的10倍之多,照片显示有大量的水合物生成。研究结果对寻找适合于CO2水合物快速生成的添加剂,为其应用于高效分离储存CO2气体技术等方面提供了指导。  相似文献   

15.
为保障深水天然气水合物开采的安全进行,降低钻井导管组合系统下沉和水合物地层失稳的事故风险,针对深水天然气水合物钻井作业过程中导管喷射到位解锁、表层套管固井和紧急脱离等3个阶段导管组合系统的下入深度设计与竖向承载力进行研究。结合桩基理论建立不同阶段作业工况下钻井导管竖向承载力的计算模型,确定不同作业阶段钻井导管的最小下入深度,然后基于TOUGH+HYDRATE和FLAC3D软件建立水合物地层稳定性数值分析模型,研究试采作业过程中水合物地层的稳定性,根据摩尔-库伦破坏准则,确定水合物地层的安全试采时间。以南海某天然气水合物喷射钻井作业为例,考虑浅层土壤的工程地质特征以及钻井作业过程中由于钻井液侵入导致水合物地层分解,给出导管安全下深设计的推荐值为98 m,为保证水合物地层的安全承载,建议水合物的安全试采时间不应超过60 d。研究结果可为深水天然气水合物钻井导管的现场作业提供技术参考。  相似文献   

16.
深水钻井气制油合成基钻井液室内研究   总被引:1,自引:0,他引:1  
深水钻井面临低温、安全密度窗口窄、浅层气易形成气体水合物、井壁易失稳等技术难题,对深水钻井液提出了更高的要求。通过研究乳化剂加量、有机土加量、水相体积分数对深水气制油合成基钻井液低温流变性和电稳定性的影响,配制了一种深水气制油合成基钻井液,其配方为80%气制油+20%CaCl2盐水+3%RHJ+3%有机土+3%HiFLO+2%CaO,并研究了其低温流变性、抑制天然气水合物生成的能力和储层保护能力。研究结果表明:该钻井液具有较好的低温流变性,动切力几乎不受温度影响,在较大的温度变化范围内保持稳定;在20 MPa甲烷气体、0℃温度条件下能有效抑制天然气水合物的生成;能有效保护油气储层,其渗透率恢复率达85%以上,可以满足海洋深水钻井的要求。   相似文献   

17.
针对海域天然气水合物钻探所面临的深水低温、浅层窄安全密度窗口、水合物生成与分解抑制、海洋作业环保要求等工程和技术难题,开发了低温抑制性钻井液体系。研发了热力学抑制剂KCl复配动力学抑制剂A2的水合物抑制技术,优选了低温流变稳定性能良好的高分子处理剂,开发的钻井液体系流变性能良好,膨润土含量为2 %,API滤失量为4 mL,密度为1.07 g/cm3;低温流变稳定性优良,4 ℃较25 ℃时钻井液当量循环密度最大增量为0.004 g/cm3,优良的流变学性能有利于深水浅部地层窄安全密度窗口井段的井壁稳定和井眼清洁。该体系还具有优异的水合物生成抑制性能,4 ℃、20 MPa、20 h内完全抑制水合物生成,陈化10 d及被钻屑污染后抑制性能保持良好,同时具备明显的水合物分解抑制性能。各处理剂重金属含量达标,钻井液体系生物毒性半有效浓度EC50值及半致死浓度LC50值均大于30 000 mg/L,满足我国一级海区环保要求。该钻井液的综合技术性能满足海域天然气水合物钻探技术要求。   相似文献   

18.
海底天然气水合物分解对海洋钻井安全的影响   总被引:2,自引:0,他引:2  
为分析天然气水合物分解对海洋钻井安全的影响,根据海底天然气水合物特征,结合天然气水合物分解动力学和热力学条件,研究了不同钻井工况下天然气水合物分解产气规律,估算了天然气水合物分解后的产气量。结果表明,在钻进天然气水合物层过程中,天然气水合物分解产气速率和累计产气量逐渐增大;在天然气水合物饱和度一定的情况下,近井天然气水合物层内的天然气水合物完全分解产气量与井身轴向半径呈平方关系;随着钻井液与天然气水合物层温差增大,天然气水合物分解速率呈指数增长;浅水区钻遇天然气水合物层易导致其分解,随着水深增加或井筒压力增大,天然气水合物分解越来越困难。研究表明,钻穿天然气水合物层时,提高钻进速度可减少天然气水合物分解;钻井过程中应根据钻前预测结果调整钻井液温度和密度来控制天然气水合物分解,同时采取必要的井控措施,以保证在适当的天然气水合物分解产气条件下安全钻进。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号