首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The impact response of a glass fiber reinforced polypropylene was studied in a 3-point drop-weight impact test between ?15 and 85°C and at a constant impact velocity of 2.2 m/s (5 mph). The response is a combination of tension and shear and can be expressed in terms of an apparent modulus, EA: 1 . Where E11 is the tensile modulus, G12: shear modulus, d: specimen thickness, and l: specimen length. For a 40 weight-percent glass reinforced polypropylene, E11 was found to have a room temperature value of 5.8 GPa, and shear modulus of 0.43 GPa. Both decreased with temperature increase, with the shear modulus showing greater sensitivity to a temperature change. The fracture initiation and propagation energies were relatively independent of temperature. The fracture initiation energy per unit deformed volume was of the order of 1 MJ/m3. The total fracture energy was found to be sensitive to l/d: about 7 MJ/m3 at l/d of 5.3 and about 1.7 MJ/ m3 at l/d of 16.  相似文献   

2.
A careful characterization and rheological study of low density polyethylene (LDPE) reveals that long-chain branching (LCB) plays a decisive role. At constant molecular weight (M?w) higher LCB reduces the Newtonian viscosity ηo and the shear sensitivity, increases the activation energy Eo, and finally delays transition to pseudoplastic flow to higher shear rates and the onset of melt fracture to higher shear stresses (τd). The flow parameters ηo, \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma _{cr} $\end{document}cr, τd, and the derived flow relaxation times are uniquely correlatable by means of a modified molecular weight (gM?w) incorporating the LCB effect. High density polyethylene are less shear sensitive than their low-density counterparts, have a lower activation energy, fracture at higher shear stress levels and cannot be regarded as branchless LDPE's.  相似文献   

3.
The influence of temperature on the impact behavior of unidirectional glass fiber-epoxy composite was studied in the range of −20 and 150°C using a 3-point drop weight test at a constant impact velocity of 2.2 m/s (5 mph). The impact energy per unit deformed volume was found to be very sensitive to the ratio length/thickness of the specimens. When the ratio was 4, the impacted specimens exhibited extensive delamination (shear failure) and the energy absorbed by the composite was about 14 MJ/m3 between −20 and 100°C, and 18 MJ/m3 at 150°C. At length/thickness above 16 the failure was mostly in tension, and the impact energy approached a constant value of about 3.5 MJ/m3, independent of temperature.  相似文献   

4.
Recent experiments on layered silicate-elastomer nancomposites by Burnside and Giannelis have shown that there is a discrepancy between theoretical modulus predictions and experimental modulus measurements. A theory is proposed to explain this discrepancy. We hypothesize that the discrepancy is due to imperfect bonding between the matrix/inclusion interface which effectively reduces the aspect ratio and the volume fraction of the inclusion. We use a simple interface model to quantify the imperfect interfacial bonding. From this model, we introduce the concept of the effective aspect ratio and effective volume fraction of the inclusions. These effective quantities depends on a single material parameter, namely, the constant interfacial shear stress, τ. The interfacial shear stress for the elastomer-silicate nanocomposites is found by fitting the theory to the experimentally measured modulus of Burnside and Giannelis. The interfacial shear stress is in the range of thousands of Pascals. For the elastomer-silicate nanocomposite systems considered here, the interfacial shear stress can be decomposed into two parts; intrinsic shear stress τi and frictional shear stress τf. The intrinsic interfacial shear stress τi depends only on the volume fraction of inclusions and decreases with increasing volume fraction of inclusions. On the other hand, the frictional shear stress τf is found to increase linearly with the applied strain. Since the mean stress is also proportional to the applied strain, this gives rise to an effective coefficient of friction, which is found to be 0.0932 for the nanocomposite system considered here.  相似文献   

5.
The present study investigated fracture and various mechanical properties of polyoxymethylene (POM) hybrids in tension and in flexure. The hybrids examined consisted of short glass fibers (GF) and spherical glass beads (GB). Comparisons are made between experimentally observed values and predictions based on the rule-of-hybrid mixtures for hybrid strength, modulus, impact strength, fracture toughness, and strain energy release rates. Results indicated that tensile strength, flexural modulus, and fracture toughness of POM/GB/GF hybrid composites can be estimated from the following rule-of-hybrid mixtures where PPOM/GB and PPOM/GF are the measured properties of the POM/GB and POM/GF composites, and χPOM/GB and χPOM/GF are the hybrid ratio (by volume) of the glass bead and that of glass fiber, respectively. In view of this, none of the aforementioned properties show any signs of a hybrid effect. Flexural strengths, impact strengths, and strain energy release rate all showed the existence of a negative hybrid effect where negative deviation from the rule-of-mixtures behavior was observed. The latter was closer to the estimation based on the inverse rule-of mixtures.  相似文献   

6.
The essential work of fracture (EWF) method has aroused great interest and has been used to characterize the fracture toughness for a range of ductile metals, polymers and composites. In the plastics industry, for purposes of practical design and ranking of candidate materials, it is important to evaluate the impact essential work of fracture at high‐rate testing of polymers and polymer blends. In this paper, the EWF method has been utilized to determine the high‐rate specific essential fracture work, we, for elastomer‐modified PA6/PPE/SMA (50/50/5) blends by notched Charpy tests. It is found that we increases with testing temperature and elastomer content for a given specimen thickness. Morphologically, there are two failure mechanisms: shear yielding and pullout of second phase dispersed particles. Shear yielding is dominant in ductile fracture, whereas particle pullout is predominant in brittle fracture.  相似文献   

7.
Epoxy and unsaturated polyester resins reinforced with random-planar orientation of short glass fibers were prepared and the temperature dependence of their tensile strength was studied. The tensile strength decreases as the temperature increases, and this tendency can be expressed in terms of critical fiber length lc and apparent interfacial shear strength τ: where σcs is the tensile strength of composite reinforced with random-planar orientation of short fibers, L is the fiber length, d is the fiber diameter, σf is the tensile strength of fiber, σm is the tensile strength of matrix, uf is the volume fraction of fiber, vm is the volume fraction of matrix, and σ′m is the stress of the matrix at fracture strain of the composite. The experimental strength values at room temperature are considerably smaller than the theoretical values, and this difference can be explained by the thermal stress produced during molding due to the large difference in the thermal expansion coefficient between glass fiber and matrix resin.  相似文献   

8.
Mechanical properties and fracture mechanisms of Novatein thermoplastic protein and blends with core–shell particles (CSPs) have been examined. Novatein is brittle with low impact strength and energy‐to‐break. Epoxy‐modified CSPs increase notched and unnotched impact strength, tensile strain‐at‐break, and energy‐to‐break, while tensile strength and modulus decrease as CSP content increases. Tg increases slightly with increasing CSP content attributed to physical crosslinking. Changes to mechanical properties are related to the critical matrix ligament thickness and rate of loading. Novatein control samples display brittle fracture characterized by large‐scale crazing. At high CSP content a large plastic zone and a slow crack propagation zone in unnotched and tensile samples are observed suggesting increased energy absorption. Notched impact samples reach critical craze stresses easily regardless of CSP content reducing impact strength. It is concluded that the impact strength of thermoplastic protein can be modified in a similar manner to traditional thermoplastics.

  相似文献   


9.
The influence of impact velocity, between 1 and 8.7 meters per second (m/s) (2.2 to 19.5 mph), on the impact behavior of polypropylene, reinforced with 20 volume percent continuous glass fibers, was investigated in a 3-point bend test at 21 °C. The ratio of specimen span to thickness, which has a profound effect on the observed results, was varied between 5.3 and 26. An attempt to apply simple beam theory for the analysis of the initial specimen response to the high loading rate was successful, except for the lower than expected values of shear modulus. The stress to break and the tensile and shear moduli were found to increase along with velocity. The dependence of impact energy on velocity was observed to be affected by the span to thickness ratio: a positive dependency was observed at low ratios and none at high ratios. This is different from the negative dependency reported for polypropylene reinforced with short fibers, and is attributed to the influence of the continuous glass fibers on the impact behavior of the composite.  相似文献   

10.
The plane strain fracture toughness of two ductile polymers, ultra high molecular weight polyethylene (UHMWPE) and acrylonitrile‐butadiene‐styrene (ABS), was measured by using the essential work of fracture approach. Truly plane strain fracture toughness (wIe) was measured for ABS at quasi‐static and impact rates of loading. For UHMWPE, the measured values were only “near” plane strain values (wIe*). It was confirmed both wIe* and wIe were independent of specimen type but dependent on strain rate. For UHMWPE, there was a negative strain rate effect, i.e., wIe* decreased with increasing loading rate. At low quasi‐static loading rate (v = 10 mm/min), wIe* was constant at 55 kJ/m2. It then decreased to 15 KJ/m2 when the loading rate was increased to 100 mm/min, and remained at that value even up to impact rate of loading (v = 3.7 m/s). For ABS, a mild positive strain rate effect was observed. wIe increased from 13 kJ/m2 at v = 10 mm/min to 17 kJ/m2 at v = 3.7 m/s.  相似文献   

11.
The influence of temperatures and flow rates on the rheological behavior during extrusion of acrylonitrile–butadiene–styrene (ABS) terpolymer melt was investigated by using a Rosand capillary rheometer. It was found that the wall shear stress (τw) increased nonlinearly with increasing apparent shear rates and the slope of the curves changed suddenly at a shear rate of about 103 s?1, whereas the melt‐shear viscosity decreased quickly at a τw of about 200 kPa. When the temperature was fixed, the entry‐pressure drop and extensional stress increased nonlinearly with increasing τw, whereas it decreased with a rise of temperature at a constant level of τw. The relationship between the melt‐shear viscosity and temperature was consistent with an Arrhenius expression. The results showed that the effects of extrusion operation conditions on the rheological behavior of the ABS resin melt were significant and were attributable to the change of morphology of the rubber phase over a wide range of shear rates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 606–611, 2002  相似文献   

12.
13.
A direct observation of crack propagation in the microbond test was carried out for five different fiber/polymer matrix systems. This technique appeared to be a very effective tool for interface characterization. Experimental plots of the force required for further crack propagation as a function of debond length were analyzed using both energy-based and stress-based models of debonding. The fracture mechanics analysis was used to construct families of crack resistance or R-curves which showed the variation of energy release rate, G, with the debond length, and included the effect of interfacial friction in debonded regions. For the first time, analogs of the R-curves were created within the scope of the stress-based model to present the local shear stress near the crack tip, τ, as a function of crack length. In both models, the behavior of the interfacial parameter (G or τ) strongly depends on the assumed value of the interfacial frictional stress (τf). However, for each matrix/fiber system there exists such a τf value for which the investigated parameter is nearly constant over the whole region of stable crack propagation (70–90% of the embedded length). Moreover, these best-fit τf values for each specimen appeared to be practically the same for both energy-based and stress-based approaches. Thus, both interfacial toughness, G ic, and local interfacial shear strength, τd, adequately characterize the strength of a fiber/matrix interface. Extrapolation of R-curves and their analogs to zero crack length allows measurement of the interfacial parameters with good accuracy.  相似文献   

14.
It is the object of the present study to obtain clear knowledge of the relations in the polypropylene melt between its linear viscoelasticity and its nonlinear steady capillary flow, paying particular attention to the elastic properties in its capillary flow. By representing the linear viscoelasticity numerically with zero-shear viscosity, η0, and steady-state compliance, J, evaluation has been made of the properties concerning the elasticity of polymer melt in the capillary flow, such as non-Newtonianity, the entrance pressure loss, the end correction, the Barus effect, and the melt fracture. The steady flow viscosity η, the entrance pressure loss P0, the critical shear stress, τc, and the critical shear rate $\dot \gamma _c$ at which melt fracture begins to occur are subject to η0 as follows: From the well-known relationship between η and the weight-average molecular weight M?w, these quantities are governed by M?w. Meanwhile, for such quantities as structural viscosity index N, end correction coefficient ν, and elastic pressure loss ratio P0/P, following correlations hold: As η0 and J are respectively determined mainly by M?w and the molecular weight distribution MWD, these quantities are governed by both M?w and MWD. Physical meanings of η0·J and η02 · J are, respectively, mean relaxation time and a measure of stored energy in steady flow. The Barus effect has a positive correlation to J, ν, and P0/P. (The symbol ∝ employed here means positive correlation.)  相似文献   

15.
The static delamination behavior of graphite/epoxy composite specimens subjected to mode I tensile opening (using UDCB
  • 1 Uniform double cantilever beam.
  • specimens), and pure mode II shear loading (using ENF
  • 2 End-notched flexural.
  • specimens) were studied. The graphite epoxy composites for the study were made from commercially treated fibers, with and without an electropolymerized interlayer. The mode I fracture energy (GIC) was found to be significantly higher (more than 50 percent) for the coated fibers. However, this improvement was accompanied by a high reduction (more than 3 times) in the mode II fracture energy (GIIC). This effect is apparently related to poor adhesion between the interlayer and the epoxy resin, which may be corrected by use of a “top layer” of appropriate composition to form chemical bonds between the phases. The fracture toughness (KIC) of composites made with commercially treated fibers was also evaluated, using double side-notched specimens.  相似文献   

    16.
    The phenomenon of extrudate distortion, which is called melt fracture, was studied for polystyrene samples of narrow and broad molecular weight distribution, and commerical samples of polypropylene and linear and branched polyethylene. It was experimentally found that the shear stress at the onset of melt fracture (τcr) is of the order of 106 dynes/cm2 and independent of the distribution of molecular weights. As the weight average molecular weight increases the shear stress τcr decreases. For polystyrene extruded at τcr the recoverable shear strain, which is defined to be half the ration (first normal stress difference/shear stress), was found proportional to the factor M zM z+1/M w2 which represents the distrubution of molecular weights. The proportionality is expected to hold for other polymer systems. The polymer behavior at the onset of melt fracture was explained in terms of Graessley's entanglement theory and his correlation between true and Rouse shear compliance.  相似文献   

    17.
    Polypropylene (PP)‐based polymer nanocomposites containing organically modified montmorillonite (OMMT) with and without maleic anhydride grafted PP, were compounded by twin‐screw extrusion. The extrusion process was repeated various numbers of times to increase the extruder residence time (TR) and, through that, the particle dispersion. Rheological measurements fitted to a modified Carreau–Yasuda model defining a melt yield stress were used to indicate changes in the particle dispersion with regard to TR. This analysis showed a monotonically increased dispersion of clay particles in the PP matrix with increasing extruder TR. The small‐strain tensile properties were tested at both ambient (20°C) and elevated (90°C) temperatures, and no significant changes were observed in the tensile strength or modulus as a function of TR. Instrumented Izod impact tests showed that the nanocomposite impact strength (σi) increased monotonically with increased TR by 70% from least dispersed to best dispersed, which was still 20% below the level for neat PP. Both the fracture initiation energy and propagation energy increased with TR, but the primary effect on σi came from the fracture propagation energy, which delivered 80% of the improvement. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

    18.
    This study investigates the mechanical properties of wood-fiber/toughened PP composite modified by physical blending with an EPDM rubber to improve impact toughness. Wood-fiber thermoplastic composites were prepared with a modified PP matrix resin, employing high shear thermokinetic compounding aided with maleated PP for the fiber dispersion. The addition of EPDM improved the impact toughness, while it reduced stiffness and strength properties. To compensate the non-plane strain fracture toughness, the specimen strength ratio (Rsb) was adopted as a comparative measure of fracture toughness. The strength ratio increased with the addition of EPDM, while it decreased with increasing wood-fiber concentration. The work of fracture increased with EPDM level except at large wood-fiber concentration. The effectiveness of the impact modification was assessed with the balance between tensile modulus and unnotched impact energy as a function of wood-fiber concentration. EPDM rubber modification was moderately effective for wood-fiber PP composites. The examination of fracture surfaces showed twisted fibers, fiber breakage, and fiber pull-out from the matrix resin.  相似文献   

    19.
    An earlier model relating the variation of the steady-shear melt viscosity of high-density polyethylene to the molecular weight distribution is applied toward predicting the steady-shear elastic compliance, the first normal stress difference, and relaxation spectrum as a function of shear rate from the molecular weight distribution. The model envisions the cutting off of longer relaxation times as the shear rate is raised such that at any shear rate ${\rm \dot \gamma }$ the molecular weights and their corresponding maximum relaxation times τm are partitioned into two classes; the relaxation times are partitioned into operative and inoperative states, depending on whether they are less than or greater than τc, the maximum relaxation time allowed at ${\rm \dot \gamma }$. Equations relating molecular weight and relaxation time to the steady-shear elastic compliance and viscosity are assumed valid at nonzero shear rates, except for the partitioning effect of shear rate. The shear rate dependence of the first normal stress difference and the steady-shear viscosity for polyethylene melts is successfully predicted over the range covered by the cone-and-plate viscometer. The assumed proportionality constant between τc and 1/${\rm \dot \gamma }$ was determined to be 1.7. Using this relation, the maximum relaxation time at 190°C for a polyethylene molecule of molecular weight M is given by τm = 1.4 × 10?19 (M)3.33. Reasonable agreement has been obtained between the experimentally determined relaxation spectrum of a polyethylene melt and that predicted from the molecular weight distribution. The agreement is best at the longest relaxation times.  相似文献   

    20.
    Summary Unplasticised poly(vinyl chloride) (uPVC) films have been tested using the essential work of fracture (EWF) method. Influence of loading rate and film thickness on the tensile properties and work of fracture parameters was evaluated. In addition, energy partition analyses were carried out applying two different approaches (“yielding” and “initiation”), which differ in the treatment of the stored elastic energy. Results showed less effect of the film thickness and deformation rate (<l00 mm/min) on the EWF terms. On the other hand, the specific essential work of fracture (w e) at high load rate (1.2 m/s) approached the yielding-related term (w e,y) obtained at static loading rates (<l00 mm/min). Received: 16 July 2002/Revised version: 31 March 2003/Accepted: 29 April 2003 Correspondence to M. Ll. Maspoch  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号