首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
马拉维难选钛锆粗精矿中钛矿物分布率48%左右,但由于铁、钛矿物较复杂,可回收钛矿物种类多,磁性变化大,同时存在磁性、密度与钛铁矿相似的赤铁矿及一些比重较大的磁性脉石如石榴石和角闪石等,磁选时,赤铁矿、石榴石和角闪石均会进入钛精矿中而影响钛精矿品位,因此,采用常规磁选或重选方法很难获得合格钛精矿。基于MLA技术系统工艺矿物学研究基础上,根据矿物组成及各矿物之间的特性差异,针对马拉维某海滨砂钛锆粗精矿,利用赤铁矿还原焙烧后磁性增强、以及磁性脉石与钛矿物之间有电性差的特点,采用湿式弱磁选—干式磁选(—还原焙烧—湿式弱磁选)—电选—重选联合工艺流程,可有效分离易进入钛精矿中的赤铁矿及磁性脉石。最终获得TiO2含量49.17%、回收率66.36%的钛精矿,ZrO2含量分别为65.04%、60.78%和55.79%的三个锆精矿,锆精矿合计回收率89.28%;同时综合回收了金红石、磁铁矿和稀土。本研究解决了钛锆粗精矿中钛铁矿与赤铁矿、磁性脉石矿物难分离的关键技术问题,可为该类钛锆资源的有效利用提供技术途径。  相似文献   

2.
由于马拉维钛铁矿资源中铁和钛矿物关系复杂,用常规的重选、磁选和电选方法难以直接分离,不能选出合格的钛精矿,仅能获得低品级的钛粗精矿。本研究用MLA(矿物定量自动检测系统)和SEM(扫描电镜)等测试手段对钛粗精矿进行了工艺矿物学研究,研究结果表明,该钛粗精矿中钛赤铁矿和赤铁矿合计含量为16.33%,钛铁矿含量为79.49%,由于钛与铁呈固溶分离或氧化蚀变形成了钛赤铁矿,导致钛粗精矿中钛、铁难以有效分离,因此,采用焙烧工艺将赤铁矿还原成磁铁矿,利用磁铁矿与钛铁矿的磁性差异特征进行磁选分离,有效回收利用钛粗精矿中的铁和钛。钛粗精矿经过还原焙烧—磁选工艺处理后获得铁精矿和钛精矿,铁精矿中Fe含量为56.71%、回收率13.50%,钛精矿中的TiO2含量为49.10%、产率为65.57%、回收率为77.57%。该试验使钛粗精矿中钛铁矿与赤铁矿得到高效分离,为马拉维钛铁矿资源高效综合回收利用提供了技术途径。  相似文献   

3.
云南钛铁矿石中主要有用矿物为钛铁矿、钛磁铁矿,矿石泥化较严重,针对该矿石进行了磁选试验研究。对原矿采用选择性擦洗解离,可以得到TiO2品位35.31%,产率78.25%的+0.030mm产品及TiO2品位8.46%,产率21.75%的-0.030mm产品。+0.030mm粒级采用弱磁除铁,弱磁尾矿采用分级-强磁选工艺进行选钛试验,对弱磁精矿再磨后采用弱磁-强磁工艺进行钛、铁分离;-0.030mm粒级采用脱泥-磁选工艺进行细粒选钛试验。最终可得到TiO2品位48.83%的钛精矿,回收率85.51%,TFe品位56.62%的铁精矿,回收率25.17%。该工艺合理可行,选矿指标较为理想。  相似文献   

4.
在实验室条件下,对南非某钛铁矿进行初步选矿试验研究,用以初步确定该类型钛铁矿可选性及选矿工艺方法。该类型原矿TFe品位20.46%,TiO_(2)品位10.08%,通过200 mT干式磁选进行分选,获得干式磁选尾矿。随后对该尾矿采用螺旋溜槽-摇床重选-湿式弱磁选工艺进行分选,最终获得TiO_(2)品位为46.4%的钛精矿。为进一步提高钛精矿品位,在实验室条件下采用浮选工艺进行分选试验,在磨矿细度为-0.074 mm含量占比为78%及粗选捕收剂用量400 g·t^(-1)和起泡剂用量100 g·t^(-1)条件下,经过一粗、一精、二扫浮选流程进行选别,最终可获得含TiO_(2)为49.1%的合格钛精矿。通过上述试验研究,该钛铁矿可采用磁-重-浮联合工艺流程,以获取合格品位要求的精矿。  相似文献   

5.
对国外某难选钛铁矿进行了工艺矿物学研究,采用化学分析、XRF分析、物相分析、矿物解离分析仪(MLA)等手段查明了矿石中矿物组成、有用有害元素赋存状态和解离程度等特性.为了合理开发该钛铁矿资源,对其进行了选矿工艺研究,研究内容包括:不同磁场强度的弱磁选试验、圆筒转速和分选电压的电选条件试验、焙烧温度和焙烧时间的氧化焙烧磁...  相似文献   

6.
朝鲜某地区钛铁矿矿砂主要元素为铁、钛.铁矿物主要为钛铁矿,少量为磁铁矿.钛铁矿单体仅占43.70%,部分钛铁矿包裹脉石矿物,且包裹体细小.试验对溜槽重选,溜槽重选粗精矿磨矿-摇床重选、原矿分级重选等工艺流程进行了试验研究,最后确定采用溜槽重选-摇床再选-摇床精矿弱磁选和摇床中矿再磨-摇床-精矿弱磁选的工艺流程,试验获得铁精矿铁品位61.30%、回收率5.11%,钛精矿TiO2品位46.81%、TiO2回收率71.62%.  相似文献   

7.
四川攀西某难选钛铁矿重选精矿矿物种类多,金属矿物主要有钛铁矿、钛磁铁矿等,脉石矿物主要为钛辉石、绿泥石等。钛铁矿与脉石矿物嵌布粒度偏细,脉石矿物多含铁元素且易泥化。为实现该重选精矿的高效分选,进行了选矿试验研究。结果表明,通过阶段磨矿-弱磁除铁-浮选富集钛-强磁提质的工艺流程能够获得良好的分选指标。矿样磨细至-0.074 mm占55%,在弱磁选磁场强度为96 kA/m条件下弱磁除铁,弱磁尾矿以硫酸为pH调整剂、羧甲基纤维素钠(CMC)为抑制剂、油酸钠为捕收剂浮选钛铁矿,将浮选粗精矿筛分(-0.038 mm)后,筛上磨细至-0.074 mm占80%,与筛下产品合并脱泥后去除-0.014 mm粒级细泥,沉砂经4次精选,闭路浮选可获得钛精矿TiO2品位42.86%、回收率59.79%的浮选指标;对浮选精矿创新性地进行强磁提质分选工艺,最终获得钛精矿TiO2品位46.77%、回收率54.38%的选别指标。实现了钛资源的有效回收,可以为选厂建设提供技术支持。  相似文献   

8.
攀枝花某铁尾矿中钛主要以钛铁矿、钛磁铁矿形式存在,由于原生产工艺不合理导致钛精矿中钛回收率低、硫品位高等问题,为此进行了详细的选矿试验研究.经多方案对比,最终确定采用弱磁选—强磁选—螺旋溜槽重选—电选工艺,可获得TiO2含量47.33%、回收率为55.13%、含硫0.15%的钛精矿,为后续的工艺流程设计提供了依据.  相似文献   

9.
陕西某地原生钛铁矿为钒钛磁铁矿选铁尾矿,原矿品位较低,矿物组成复杂,钛铁矿与榍石、钛赤铁矿等脉石矿物可浮性相近,且钛铁矿嵌布粒度细,与榍石、钛磁铁矿等脉石连生密切,分离难度大。针对该矿石性质,进行了4种方案的工艺对比试验研究,结果表明,一段高梯度强磁选-磨矿-弱磁选-二段高梯度强磁选-脱硫浮选-钛浮选方案,工艺简单,精矿指标最好,在原矿Ti O2品位9.78%的情况下,获得了Ti O2品位46.82%,回收率40.84%的钛铁矿精矿,且浮选前再磨后,精矿指标可进一步提高到Ti O2品位47.23%,回收率45.36%。  相似文献   

10.
李韦韦 《现代矿业》2020,36(7):111-115
加拿大某钒钛磁铁矿石Fe品位为4256%,TiO2品位为1065%,V2O5品位为033%,Cr2O3品位为122%,矿石中的金属矿物主要为钛磁铁矿和钛铁矿,绝大部分有用元素赋存在钛磁铁矿中。为确定该矿石的开发利用工艺,进行了选矿试验。结果表明:采用两阶段磨矿阶段弱磁选工艺,可获得Fe、TiO2、V2O5、Cr2O3品位分别为5276%、1021%、042%、164%,回收率分别为8714%、6738%、8945%、9391%的铁精矿;弱磁选铁尾矿采用强磁选+重选选钛流程,可获得TiO2品位为4703%的钛精矿,相对弱磁选铁尾矿的回收率为734%。  相似文献   

11.
陈明 《西部探矿工程》2010,22(10):142-144
由于广东地区岩体的特殊性,致使广东地区的基性岩、中基性岩区重磁异常展布特征的特殊,结合钛铁矿的成矿特征,把重力异常、航磁异常与钛铁矿特征有机组合,为研究适合该地区勘探钛铁矿的规律提供一定的航磁异常筛选模式。  相似文献   

12.
13.
钛铁矿磨矿分级流程研究   总被引:1,自引:1,他引:0  
周建国 《矿冶工程》2019,39(1):64-68
系统论述了几种磨矿分级流程,详细分析了各种磨矿分级流程的优劣,推荐旋流器+高频细筛的磨矿分级流程、设备配置及设备选择。  相似文献   

14.
王玉明 《矿冶工程》2011,31(5):66-68
利用热重分析法对钛铁矿的碳热还原机理进行了研究。结果表明, 温度是影响钛铁矿还原程度的重要因素, 温度升高导致钛铁矿的还原速率加快、还原程度加深。通过XRD、SEM及EDS等分析手段对碳热还原样品的相变化、化学组成及表面形貌等进行了分析。分析表明, 巴马钛铁矿中高含量杂质阻碍了钛铁矿的还原, 主要在于Mn2+形成了富集区限制了Fe2+的完全还原。还原样品中的相主要为还原Fe、金红石、还原金红石、Ti3O5和假板钛矿固熔体。动力学研究表明还原温度是控制反应速率的关键因素。  相似文献   

15.
钛磁铁矿对钛铁矿浮选的影响   总被引:4,自引:0,他引:4  
钛磁铁矿对钛铁矿的浮选会产生非常不利的影响。单矿物研究结果表明:钛磁铁矿具有比钛铁矿更好的可浮性,浮选中会优先进入精矿,影响精矿品位,并增加药剂消耗;钛磁铁矿易产生磁团聚现象,造成机械夹带,包裹脉石的钛磁铁矿磁团聚体进入浮选精矿中会降低精矿品位和回收率。钒钛磁铁矿选铁尾矿实际矿样的试验结果表明:不除铁直接浮选钛时,精矿TiO2品位为44.02%,回收率为44.38%;而先经弱磁选除去钛磁铁矿后,采用相同的浮选流程和药剂制度,浮选精矿的TiO2品位提高到47.40%,回收率提高到52.64%。  相似文献   

16.
为探究摩擦电选分选钛铁矿的可行性,对比了钛铁矿及长石、石英、云母等脉石矿物与不同材质进行摩擦后的荷电特性。结果表明,以PVC作为摩擦介质时,钛铁矿与脉石矿物荷电的极性相反,且钛铁矿荷电量最高,荷质比可达4 nC/g。在此基础上对不同粒级矿物颗粒进行了荷电效果比较,确定物料的最佳分选粒级为0.074~0.125mm。采用实验室锯齿形摩擦电选系统对粒度为0.074~0.125 mm的钛铁矿与长石、石英、云母脉石矿物组成的混合物料进行摩擦电选试验,考察分选电压、给料速度和风量对分选结果的影响。结果表明,物料的分选效率随着分选电压、给料速度和风量的增大均呈先增大后减小的趋势,在分选电压为20 kV、给料速度为4.7 g/s、风量为80 m3/h时,钛铁矿分选指标最佳。  相似文献   

17.
通过对矿石成分和结构构造、钛铁矿的产出形式和蚀变类型、钛铁矿的能谱微区成分和嵌布粒度等的分析,总结出影响钛铁矿选矿指标的主要矿物学特征,并对钛铁矿分选性能的影响因素进行了分析。最终查明矿石中钛的赋存状态较为分散,其中钛铁矿常零星散布在脉石中,部分沿钛磁铁矿边缘分布,且普遍沿表面、边缘、粒间及裂隙发生榍石化、金红石化及赤铁矿化,粒度较为细小。由于氧化作用的影响,部分钛铁矿与榍石镶嵌关系过于复杂将是影响钛精矿质量的主要原因;即使采用细磨工艺,矿石中的钛铁矿亦很难获得较充分的解离。研究成果为钛铁矿的选矿工艺研究提供了指导。  相似文献   

18.
对云南某低品位钛铁矿进行了选矿试验研究, 采用弱磁与强磁相结合的方案进行抛尾, 可抛掉TiO2品位为1.18%、产率为81.11%的尾矿, 获得TiO2品位为12.38%、TiO2回收率为64.50%的抛尾精矿; 抛尾精矿采用高梯度磁选预选获得TiO2品位为22.29%、对原矿回收率为57.16%的强磁选精矿; 以MOH为钛铁矿捕收剂, 采用一粗三扫三精浮选流程对高梯度磁选精矿进行浮选, 最终可获得TiO2品位为45.46%、TiO2总回收率为49.31%的钛铁矿精矿。  相似文献   

19.
攀西地区钛精矿成分复杂,性质特殊.为了探明碳热还原钛精矿的机理,得出不同配碳量、温度、碱度对钛精矿碳热还原反应的影响以及钛精矿碳热还原最优条件,采用HSC Chemistry 6.0软件对钛精矿配碳还原过程中铁、钛和钒的起始还原温度、金属含量、金属化率等进行了计算.结果表明:随着温度的增加,还原率逐渐增加;配碳量对还原反应的影响较大,当配碳量增加时,还原反应开始温度逐渐降低;碱度的增加对金属铁的回收率影响不大,对金属钒和钛的影响较大;当温度为1600℃、碱度为1、配碳量为14%时,对金属铁、钛、钒的回收效果最好,铁回收率可以达到99%以上,钛回收率为0.0147%,钒的回收率为25.5%.  相似文献   

20.
云南文山某细粒钛铁矿选矿试验研究   总被引:2,自引:1,他引:1  
云南文山某钛铁矿原矿含TiO25.96%,以钛铁矿为主,还含有少量的金红石。原矿经磨矿分级控制入选粒度为-0.5 mm,采用水力分级后重选,水力分级粒度为0.038 mm,重选工艺流程为螺旋溜槽粗选、摇床精选,得到品位46.67%,回收率59.01%的钛精矿。该工艺流程简单,投资小、选矿成本低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号