首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The critical point drying method of preparing samples for scanning electron microscopy is associated with a variable amount of specimen shrinkage. We studied the causes of this phenomenon is isolated mouse hepatocyte nuclei and in human erythrocytes and found that the critical point drying process itself caused most of the shrinkage that we observed (a 25-30% reduction in diameter in both specimens). Glutaraldehyde fixation and ethanol dehydration caused only minimal size reduction, prior to critical point drying. Substitution of an inert (ethylene glycol-ethylene glycol monethyl ether) dehydration technique did not alter the final result. Previous studies in our laboratory using high resolution SEM and correlative transmission microscopy of isolated nuclei have demonstrated that the shrinkage represents a miniaturization of the organelles in which all structural components retain their usual relationships.  相似文献   

2.
A. Boyde  E. MacOnnachie 《Scanning》1979,2(3):149-163
This paper describes the results of experiments in which the volume changes in mouse embryo limb samples were followed more or less continuously after fixation through dehydration and critical point drying, with in some instances data relating to post critical point drying shrinkage. 14 and 15 day p. c. mouse embryos were fixed in 3 % glutaraldehyde in cacodylate buffer and stored in this fixative until use. Single specimens were studied using a Quantimet image analysing computer to record the changes in projected area of the unmounted specimens as they were passed through the usual series of reagents according to various commonly used dehydration schedules. The area changes were converted to volume changes for the purposes of presentation in this paper. The Quantimet system could not be used to follow volume changes in the CPD bomb so that most experiments detail the volume in the intermediate fluid before CPD and the size of the specimen immediately after it was removed from the CPD bomb. A few experiments were conducted in which the specimens were measured whilst they were in the CPD bomb. The measurements relating to dehydration and CPD procedures were compared with measurements of air dried and freeze dried specimens. All three drying methods cause considerable shrinkage: freeze drying to 85 % of the glutaraldehyde fixed tissue volume; critical point drying to 41% (after 24 h); and air drying from a volatile solvent to about 18% of the fixed tissue volume. Air drying from water caused a shrinkage to about 12% of the original volume. There was no significant difference between the various commonly used CPD schedules or between GA only and GA + Os O4 fixed tissue. CPD via cellosolve and CO2 caused substantially more shrinkage than other methods. Dimensional changes during specimen preparation are probably associated with changes in shape and in relative relationships between organelles, cells and tissues having different compositions. This should be borne in mind by all those interpreting scanning electron micrographs of dried animal soft tissue specimens.  相似文献   

3.
4.
Bacterial sample preparation is crucial for its observation by scanning electron microscopy (SEM). However, the current polylysine (PLL) method leads to bacterial morphological changes. To overcome this problem, we employed chitosan (CS) to coat coverslips to prepare bacteria for SEM and compared it with the PLL method. Coverslips coated with 0.025% (w/v) CS showed satisfactory bacterial binding ability. Within 30 min of binding time, the number of bacteria on CS-coated and PLL-coated coverslips exhibited no differences. Four bacteria strains were employed to compare the differences in SEM images between the two methods. Most of the bacteria showed irregular surface or sticky substances after settling on PLL-coated coverslips, while bacteria with clear surface texture were observed on CS-coated coverslips. Transmission electron microscopy (TEM) images showed deformed bacterial envelope on PLL-coated coverslips; meanwhile, similar intact envelope was observed from the bacteria on CS-coated coverslips and the bacteria without any treatment. The TEM results verified the morphological differences of SEM between the two methods. Except for morphology, the length of the rod-shaped bacteria was longer on CS-coated coverslips than that on PLL-coated coverslips, less shrinkage of the sample was observed, and CS could preserve the length of the rod-shaped bacteria better than PLL in its preparation for SEM. It is demonstrated that the low-cost CS could be utilized in bacterial preparation for SEM to acquire preferable images. Bacterial suspension with optical density at 600 nm of about 0.5, deposited on 0.025% CS-coated coverslips for 30 min, and followed by routine fixation, dehydration, and drying are optimal parameters.  相似文献   

5.
6.
7.
This paper compares sixteen preparative techniques thought to be of advantage in the study by scanning electron microscopy (SEM) of human articular cartilage surfaces. The adequacy of surface preservation obtained with the techniques, was judged subjectively, first, by the reproducibility of secondary electron images of normal cartilage, and second, by comparing the results with those obtained by reflected light microscopy of the fresh unfixed cartilage surface over a magnification range of × 20 – × 240. Adequate surface preservation was confirmed when cartilage surfaces had been dehydrated through ethanol to propylene oxide and vacuum dried; dehydrated through amyl acetate and quenched in Freon before freeze-drying; dehydrated and passed through amyl acetate at low temperature before freeze drying. Valuable information can be obtained from different specimens by varying the technique of preparation. At different ages, different surface features are best preserved. In a systematic study it has been found essential to adopt a uniform preparative method and to control the results by reflected light microscopy. Even with the most perfect preparation, the surface appearances cannot be identical with those that function under load in vivo.  相似文献   

8.
Inflated frozen mouse lungs were examined using low-temperature scanning electron microscopy (LTSEM) following bulk fracture under vacuum. Various aspects of pulmonary architecture were identified and correlated with structures revealed by SEM following conventional fixation and preparation techniques. Surface etching of selected samples was performed by radiant heating, revealing characteristic cytoplasmic, nuclear and extracellular lattice patterns resulting from ice crystal formation during freezing. These patterns aided in distinguishing between intra- and extracellular spaces. Pulmonary fluids such as mucus and surfactant were identified. Iron oxide particles were introduced into the lungs of some animals by intratracheal instillation and were subsequently identified in frozen-hydrated lung tissue using characteristic X-ray identification and mapping techniques. Particles were observed both intra-and extracellularly and were commonly found in large deposits. These observations confirm the utility of LTSEM techniques for examination of particles within pulmonary tissue. Particle exposure by intratracheal instillation was found to result in a non-uniform distributional pattern.  相似文献   

9.
Cryopreservation is the superior technique for viewing leaf surfaces in the SEM. Epidermal cells become distorted when freeze dried and disrupt the orientation of epicuticular wax structures. The latter are largely lost during critical point drying. Nevertheless, the appearance of surface structures after subjecting them to each drying method is valuable in interpreting the features observed by cryopreservation.  相似文献   

10.
In order to observe intracellular structures by scanning electron microscopy, excess cytoplasmic matrix must be removed from the fractured surface of cells. Previously we reported an Osmium-DMSO-Osmium method devised for this purpose. This method is very effective in revealing intracellular structures, but requires osmium tetroxide for initial fixation with some consequent disadvantages. In the present study, a revised Osmium-DMSO-Osmium method is reported, in which an aldehyde mixture is used as the initial fixative instead of osmium tetroxide. As fixation is carried out by perfusion in this revised method, better preservation of fine structures is achieved than by the original method, especially in the central nervous tissue which tends to suffer from post-mortem degeneration. Moreover this method can be applied to cytochemical studies of intracellular structures with a scanning electron microscope (SEM). In this study, acid phosphatase of lysosomes is demonstrated in a coloured SEM micrograph.  相似文献   

11.
A method is presented by which water is preserved as ice during examination of the lung in the scanning electron microscope (SEM). The lung need only be inflated, frozen, transferred to the microscope and examined with the electron beam. Chemical fixation, solvent dehydration, and drying are not necessary. The low-temperature SEM of Pawley and Norton [11] maintains lung at ?180° C, nearly liquid nitrogen temperature, for extended periods with a Joule-Thomson refrigerator built into the stage. It has an integral high-vacuum preparation chamber attached to the microscope column which allows serial fracture, low-magnification stereo light microscopy, radiant etching, and evaporative coating with gold or carbon. The stage can be tilted from 0° to 45° and rotated a full 360°. It is demonstrated that the air-liquid interface in the lung can be examined and that low-temperature SEM can be used to investigate the shape of alveoli, the patency of the pores of Kohn in the hydrated state, and the shrinkage and distortion of lung with drying.  相似文献   

12.
Two different freeze-fracture methods are explored for preparation of biological material for scanning electron microscopy. In the simpler method the tissues are first fixed and dehydrated. They are then frozen and fractured, and after thawing, critical-point dried. This method has already been used in a number of studies of animal tissues (heart, liver, kidney). It is applied here to the examination of plant material (leaf mesophyll cells). In the second method tissues, or cells, are first infiltrated with cryoprotectant (dimethylsulphoxide) then frozen and fractured, and not fixed until after thawing. The fixed tissues are finally dehydrated and critical-point dried. This method also has previously been used in the study of animal tissues, and is applied here to carrot protoplasts, chicken erythrocytes, and leaf mesophyll cells.  相似文献   

13.
14.
15.
Monolayers of PtK-1 and HeLa cells grown on glass or plastic supports are extremely susceptible to lacerations, e.g., splits and cracks caused mainly by shrinkage when prepared for scanning electron microscopy (SEM). We find that a four-step fixation procedure including glutaraldehyde, OsO4, tannic acid, and uranylacetate application, in combination with critical point drying, drastically reduces these structural damages. In addition, the conductivity of the specimens is enhanced, so that they can be investigated without gold coating. Transmission electron microscopy (TEM) investigation of perpendicular sections in the area of lacerations provides evidence that the subcortical cytoskeletal elements are of crucial importance in maintaining cell membrane stability during the preparations. Our relatively quick and simple procedure results in an improved structural appearance of the cells.  相似文献   

16.
This paper reports our experiences with preparing delicate biological specimens for scanning electron microscopy. Three different washing methods were evaluated: One method allowed the analysis of the location of the bacterium Mycoplasma mobile on piscine gill epithelium and the optimal evaluation of histopathologic changes caused by this microbe. These results were achieved when specimens were washed three times in a cacodylic acid buffer after completion of the in vitro infection experiment in gill explant cultures. We also found that of three different concentrations of glutaraldehyde, a fixation with a 1.5% solution was sufficient to achieve excellent structural preservation, even without using post fixation in osmium tetroxide. Furthermore, this study showed that the use of acetone-carbon dioxide in the critical point drying procedure resulted in well-preserved piscine gill epithelium and mycoplasmas. Finally, long-term storage of tissue specimens in 0.1 M cacodylic acid buffer is possible if the buffer is changed on a monthly basis to avoid growth of unwanted microorganisms, such as fungi.  相似文献   

17.
A new apparatus is described which facilitates the freeze fracturing of specimens under liquid nitrogen in preparation for scanning electron microscopy. The apparatus is simple and can be made by any competent engineering department.  相似文献   

18.
The development and application of digital imaging technology has been one of the major advancements in scanning electron microscopy (SEM) during the past several years. This digital revolution has been brought about by significant progress in semiconductor technology, notably the availability of less expensive, high-density memory chips and the development of inexpensive, high-speed, analog-to-digital and digital-to-analog converters, mass storage, and high-performance central processing units. This paper reviews a number of the advantages presented by digital imaging as applied to the SEM and describes a system developed at the National Institute of Standards and Technology for this purpose.  相似文献   

19.
20.
Two new observations have been made on human chromatid/chromosome ultrastructure using both scanning and transmission electron microscopy (SEM, TEM). A bipartite, apparently half-chromatid-like structure was observed in whole human chromosomes studied with SEM and in longitudinally sectioned chromosomes analyzed with TEM. In addition, we also observed a zipper-like configuration as the parallel sister chromatids separated likely due to the supercoiled structure of the chromosome and chromatid. It is possible that either or both of these new observations resulted from our (improved) method of preparing the chromosomes for SEM and TEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号