首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
某混合金铜矿浮选—氰化联合流程选矿试验研究   总被引:1,自引:0,他引:1  
通过对某金铜矿山混合矿石进行工艺矿物学研究,采用混合浮选得到的浮选精矿铜、金品位分别为9.42%、52.42 g/t,回收率分别为82.46%、60.97%;浮选尾矿氰化浸出,浸出率79.16%;采用混合浮选—氰化联合流程,金的综合回收率为91.87%。试验结果表明矿石中的主要元素金和铜得到了充分的回收。  相似文献   

2.
国外某高砷铜金矿石金、铜、砷品位分别为3.46 g/t、1.028%、1.16%,为高效开发利用该矿石资源,进行了系统的浮选试验以及加压预氧化、氰化浸金试验研究,确定采用混合浮选—铜砷(硫)分离—硫砷精矿加压预氧化氰化浸金—尾矿直接氰化的选冶联合工艺。试验结果表明:原矿在磨矿细度为-0.074 mm占85%时,经1粗2扫混合浮选,混浮精矿再磨至-0.038 mm占85%,经1粗2精1扫铜砷(硫)分离获得铜、金、砷品位分别为22.49%、27.43g/t、0.42%,铜、金、砷回收率分别为87.99%、35.12%、1.88%的铜精矿以及铜、金、砷品位分别为0.47%、9.03 g/t、5.90%,铜、金、砷回收率分别为6.03%、37.93%、86.57%的硫砷精矿;采用加压预氧化—氰化浸金工艺处理硫砷精矿,金对原矿的回收率达到36.19%;采用直接氰化浸金工艺处理混合浮选尾矿,金对原矿的回收率为10.77%;铜和金的选冶综合回收率分别达到87.99%、82.08%,实现了矿石中铜和金的有效回收。  相似文献   

3.
介绍了采用“浮选-浮选精矿销售-浮选尾矿直接炭浆法氰化浸出”工艺方案综合回收中亚某矿山过渡带难选含铜金矿中的金和铜。该矿原矿石含金3.52g/t、银11.20g/t、铜0.54%、砷0.40%、硫1.54%,其中氧化物铜含量为0.22%,占总铜含量的40.74%,金、铜嵌布粒度微细,嵌布关系复杂,属于复杂难选含氧化铜金矿。针对该矿特点,通过引进氧化铜类捕收药剂体系,增加精选级数,按照便于现场技改的硫化物铜、氧化物铜混合浮选工艺进行金铜浮选回收,对浮选尾矿进行直接炭浆法氰化浸出回收金。最终可获得浮选精矿产率3.92%,含金48.50g/t,含铜8.45%的可销售精矿,浮选尾矿含铜0.21%,可氰化铜含量0.12%,浮选尾矿直接炭浸所需氰化钠用量为3.1kg/t,金浸出率74.71%,浮选+浸出金综合回收率88.26%,铜回收率62.16%。与现场原工艺“浮选-浮选精矿销售-浮选尾矿氨氰法抑铜浸金-氨氰尾浆炭浸”相比,浮选精矿产率接近,精矿金铜品位更优,金综合回收率提高了6.02%,铜回收率提高了9.24%。试验成果已作为现场技改依据。  相似文献   

4.
针对福建某低品位铜矿石,通过对矿物性质及原工艺流程的诊断分析,采用"粗磨—快速浮选—快浮尾矿异步浮选—粗精矿再磨再选"的联合工艺,能有效保证了已解离的目的矿物优先回收,同时还使得难选铜矿物及含铜连生体矿物得到充分回收。新工艺流程获得了含铜24.09%、含金6.48 g/t、铜回收率为92.69%、金回收率为60.54%的铜精矿,铜回收率提高了3.87个百分点,金回收率提高了13.61个百分点。  相似文献   

5.
黄丽娟  姜亚雄  汪勇  朱坤  惠士成 《矿冶》2017,26(5):17-21
以云南某铜金多金属硫化矿为研究对象,通过优先浮选获得铜精矿、硫精矿;浮选尾矿经过磁选选铁,获得合格的磁铁精矿;磁铁精矿再磨后氰化浸出回收金,浸金渣作为磁铁精矿产品进行销售。铜、金、铁和硫均得到综合回收。  相似文献   

6.
某尾矿回收金工艺对比试验研究   总被引:1,自引:1,他引:0  
某浮选尾矿金品位偏高,品位为0.55 g/t。为回收该尾矿中的金,试验进行了直接磨矿浮选、分级粗粒再磨—全粒级浮选、尼尔森重选、氰化浸出四种工艺对比研究。研究结果表明,分级粗粒再磨—全粒级浮选工艺更适合该尾矿中金的回收,该工艺可获得金精矿产率为0.81%,品位为35.18 g/t,回收率为53.53%,浮选指标较好,工艺简单,按照现场原矿生产浮选流程,生产上易操作。经初步经济分析,该尾矿吨矿利润可达27.74元,工业应用价值较好。  相似文献   

7.
福建某低品位金铜混合矿石含Au 0.36 g/t、Cu 0.29%、Ag 7.4 g/t、S 4.02%,若直接氰化,铜进入金氰化浸出系统,不但得不到回收,还会恶化选金指标,增加生产成本。针对该低品位金铜混合矿,采用浮选+氰化联合工艺进行选别。浮选作业考察了磨矿细度、石灰用量、捕收剂种类、分散剂种类对浮选指标的影响,结果表明,在磨矿细度为-0.074 mm 60%、石灰用量为1500 g/t、Z-200作捕收剂、水玻璃作分散剂时,浮选效果最佳,闭路实验获得铜精矿含Au 16.74 g/t、Cu 20.21%,金、铜回收率分别为61.90%和87.09%。将浮选尾矿进行氰化浸出,考察了氰化钠浓度和氰化时间对金浸出率的影响,结果显示,在氰化钠初始浓度300 mg/L浸出24 h,金浸出率为71.26%。全流程Au回收率达到89.05%,Cu回收率达到87.09%,最终达到综合高效回收矿石中金铜的目的,为此类资源的开发提供了技术支撑。   相似文献   

8.
某金矿试样由原生矿和氧化矿混合配矿,采用浮选-浮选尾矿浸出联合工艺回收目的矿物金。浮选作业通过条件试验的优化,确定最佳工艺流程为一次粗选、四次精选、二次扫选,获得金品位48.85 g/t、回收率53.57%的金精矿;浮选尾矿再磨后采用低毒浸金剂、氰化钠进行了浸出对比试验,前者金的浸出率31.66%左右,略低于后者。综合试验表明,采用联合工艺可以获得较为理想的技术指标,金总回收率85.23%。  相似文献   

9.
西藏某石英脉金矿主要载金矿物为银金矿,嵌布粒度较细且不均匀,金品位3.22g/t,为主要回收元素,银品位19.50g/t,为可综合回收元素。针对矿石性质,采用浮选-浮选尾矿氰化浸出联合工艺流程对矿石中的金进行回收。经一粗一精二扫、中矿顺序返回的闭路浮选流程,可获得浮选金精矿含金95.81g/t、金回收率84.34%的指标;浮选尾矿进行氰化浸出,金作业浸出率为79.31%,对原矿回收率为12.42%。联合工艺最终获得金总回收率96.76%的指标。其中浮选金精矿中银品位为407.01g/t、金尾矿中银品位为5.97g/t、精矿银回收率为68.78%,氰化浸出作业中银作业浸出率为51.53%,对原矿浸出率为15.98%,银综合回收率为84.76%。  相似文献   

10.
针对梭罗沟金矿堆浸尾矿存在回收率低,粒度分布不均匀,细泥含量较多的特点进行了堆浸尾矿回收金的试验研究。试验进行了分粒级全泥氰化浸出、堆浸尾矿浮选—浮选尾矿全泥氰化浸出、堆浸尾矿炭浸法氰化浸出3种不同工艺的对比,及-10~0.1 mm粒级柱浸、-0.1 mm粒级全泥氰化浸出、-0.1 mm粒级炭浸氰化试验。试验最终确定采用堆浸尾矿浮选—浮选尾矿全泥氰化浸出为最终工艺流程,同时确定了-10~0.1 mm和-0.1 mm粒级氰化浸出的最佳工艺参数,为该矿的生产实践提供了理论依据。  相似文献   

11.
彭建  张建刚 《金属矿山》2019,48(1):78-82
西藏某浸染状次生硫化铜矿石铜品位为1.86%,原生硫化铜占总铜的15.05%,次生硫化铜占总铜的76.88%,主要铜矿物为斑铜矿、黄铜矿,其他金属矿物有黄铁矿、磁黄铁矿等;脉石矿物以石榴石、辉石、石英等为主。为了确定该矿石中铜、金的适宜回收工艺,进行了选矿试验。结果表明,矿石在磨矿细度为-0.074 mm占70%的情况下进行1粗2精快速浮选,1粗2扫常规浮选,快速精选1尾矿与常规粗选精矿合并再磨至-0.038 mm占80%的情况下进行1粗2精2扫铜硫分离,获得的快速浮选精矿铜品位为27.05%、金品位为8.28 g/t,铜、金回收率分别为60.79%、50.90%;常规浮选铜精矿铜品位为17.06%、金品位为5.02 g/t,铜、金回收率分别为29.81%、23.99%。快速浮选+常规浮选、快速精选1尾矿与常规浮选粗精矿再磨再选工艺流程既能避免铜矿物的过磨,保证铜的回收率,又可得到较高品位的铜精矿,获得较好的铜、金回收指标。  相似文献   

12.
东非乌干达Busia金矿为中等硫化物石英脉型含金矿石,通过“重选-重选尾矿浮选”、“重选-重选尾矿全泥氰化”和“重选-重尾浮选+浮选精矿氰化”三种工艺流程的对比,最终确定用“重选-重尾全泥氰化”或者“重选-重尾浮选+浮选精矿氰化”工艺来回收金。其中“重选-重尾全泥氰化”工艺得到:在磨矿细度-320目占80%,氰化时间24小时,金回收率92.23%;“重选-重尾浮选+浮选精矿氰化”工艺得到:再磨细度-400目占85%,氰化时间48小时,精矿浸出率90.07%,金回收率85.02%。  相似文献   

13.
澳大利亚某低品位铜金矿中铜以黄铜矿形式存在,金大部分以单体自然金形式存在,赋存于硫化物及脉石粒间,部分以不可见金的形式被黄铁矿包裹。黄铜矿和黄铁矿嵌布粒度较细,平均粒度0.03 mm。试验采用混合浮选—铜硫分离工艺,获得铜、金品位分别为19.02%和13.99 g/t,铜、金回收率分别为73.00%和49.29%的铜精矿;硫精矿经再磨后利用绿金浸出剂浸金,获得对原矿金浸出率14.92%,金总回收率64.21%,浸渣硫品位30.23%,可作为硫精矿销售。   相似文献   

14.
针对新疆某单一铜矿石选矿厂浮选尾矿铜品位(0.065%)较高的问题,对其浮选尾矿进行工艺矿物学研究,开展降尾工艺试验研究,最终采用浮选尾矿分级抛尾、粗粒级(+0.15 mm)尾矿再磨再选的浮选工艺流程,获得了精矿铜品位20.13%、铜回收率95.75%的铜精矿.尾矿铜品位可降至0.040%,比现场生产的铜品位降低了 0...  相似文献   

15.
某石英脉型微细粒嵌布低品位金矿石选矿试验   总被引:2,自引:0,他引:2  
为了给某石英脉型微细粒嵌布低品位金矿石的开发利用提供依据,根据矿石性质,采用浮选-浮选尾矿氰化浸出-浮选精矿焙烧后氰化浸出工艺流程进行了选矿试验。结果表明:浮选-尾矿氰化浸出可获得金品位为61.88 g/t、砷含量为4.21%、金回收率为77.57%的金精矿和作业金浸出率为75.85%、对原矿金回收率为17.02%的尾矿浸出液,两者的金回收率合计达到94.59%。金精矿经焙烧预处理,焙砂砷含量降到0.38%、金品位提高到88.40 g/t;焙砂氰化浸出的作业金浸出率达93.28%、对原矿金回收率为72.36%,金精矿焙砂和浮选尾矿氰化浸出的综合金回收率为89.38%。  相似文献   

16.
湖北某铜尾矿中有价组分为WO3、Cu、S、Fe,为实现该铜尾矿的资源化利用,开展了详细的综合回收试验研究。结果表明:① 采用铜硫混合浮选、铜硫混合精矿再磨后铜硫分离浮选工艺流程处理试样,闭路试验可获得产率0.10%、Cu品位13.80%、Cu回收率21.71%的铜精矿以及产率1.22%、S品位44.50%、S回收率50.89%的硫精矿。② 采用2粗2扫1精常温浮选处理铜硫混浮尾矿,常温精矿浓缩至60%,再加温至90 ℃,搅拌、解吸80 min后采用1粗2扫5精加温精选、中矿顺序返回的工艺流程,最终获得产率0.93%、WO3品位15.31%、WO3回收率55.07%的钨精矿产品;该钨精矿进行酸浸提质,最终获得产率0.40%、WO3品位34.19%、WO3回收率53.04%的酸浸钨精矿。③ 针对钨粗选尾矿,采用弱磁选工艺可获得产率3.73%、TFe品位60.45%、回收率15.66%的铁精矿。  相似文献   

17.
西藏玉龙铜矿硫化矿选矿工艺流程的研究   总被引:7,自引:0,他引:7  
吴熙群  李世伦  谢珉 《矿冶》2000,9(4):32-37
玉龙铜矿硫化矿氧化率较高 (13 2 6 % ) ,次生铜含量大 (73 4% ) ,黄铁矿含量高 ,高岭石和蒙脱石的含量也较多 (18 6 1% ) ,矿石性质复杂、难选。通过多种选矿工艺流程探讨 ,确定采用铜硫混合浮选 -混合精矿再磨后铜硫分离 -混选尾矿分级后矿砂浮选、矿泥酸浸工艺。在小型试验基础上 ,完成了扩大连选试验。连选试验所获铜精矿铜品位2 0 47%、铜回收率 73 6 6 % ,加上矿泥酸浸 ,总铜回收率为 78 49%。  相似文献   

18.
采用浮选?浸出工艺处理含铜0.94%的玄武岩型氧化铜矿,该铜矿物氧化率高,嵌布粒度较细,属于低品位难选氧化铜。通过硫化浮选法回收部分氧化铜矿及硫化铜矿,可得到品位为16.2%,回收率为50.7%的浮选铜精矿,通过硫酸浸出法回收浮选尾矿中的细粒级铜矿物,浸出率达87%,此浮选-浸出工艺实现了铜矿物的有效回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号