首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Studies are reported on melt rheological behavior of some binary and ternary blends of polypropylene (PP) with one or two of the following polymers: styrene–b-ethylene butylene–b-styrene triblock copolymer (SEBS), polystyrene (PS), and high-density polyethylene (HDPE). Blend composition of the binary blends PP/X or ternary blends PP/X/Y were so chosen that the former represent addition of 10 wt % X to PP while the latter represent 10 wt % addition of X or Y to the PP/Y or PP/X blend of constant composition 90:10 by weight, X/Y being SEBS, PS, or HDPE. Measurements were made on a capillary rheometer using both temperature elevation and constant temperature methods to study the behaviors prior to flow and in the flow region. Flow behavior, measured at a constant temperature (200°C) and varying shear stress (from 1.0 to 5.0 × 106 dyn/cm2) to evaluate melt viscosity and melt elasticity parameters, is discussed for its dependence on the nature of the blend. Extrudate distortion, studied as a function of shear stress to evaluate the critical shear stress for the onset of extrudate distortion, showed differences in the tendency for extrudate distortion or melt fracture of these different blends. Also discussed is the effect of melt viscosity and melt elasticity on extrudate distortion behavior at the critical condition, which showed a unique critical value of the ratio (melt elasticity parameter)1/2 (melt viscosity) for all these blends. Blend morphologies before and after the flow through the capillary are investigated through scanning electron microscopy, and their correlations with rheological parameters of the melt are discussed.  相似文献   

2.
This works systematically investigates the interfacial properties of the binary and the ternary blends based on polystyrene (PS), ethylene octene copolymer (EOC), and styrene–ethylene–butylene–styrene (SEBS) by analyzing the melt linear rheological behavior of the blends and neat components. Moreover, the relationship between rheology, phase morphology, and mechanical properties of PS/EOC ternary blends with various quantities of SEBS were studied. The surface shear modulus (β) and interfacial tension values obtained by Palierne model indicated that the EOC/SEBS blend has the best interfacial properties, while the lowest interaction was found for PS/EOC blend. Based on the Palierne model and Harkin's spreading coefficients a core–shell type morphology with EOC phase encapsulated by the SEBS shell dispersed in the PS matrix was determined for the ternary blends. Scanning electron microscopy results revealed that both fibrillar and droplet forms of dispersed phase could be developed during the blending of PS and EOC in presence of SEBS. The extent of fibrillar morphology and interfacial interactions in PS/EOC/SEBS ternary blends was dependent on the SEBS content. The improvement of the mechanical properties of PS/EOC blends in the presence of SEBS was evidenced by the tensile and impact resistance experiments. The tensile strength reinforcement was more pronounced for the ternary blends with more fibrillar dispersed phase. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48791.  相似文献   

3.
Studies on impact and tensile properties of binary blend of PP and ABS and ternary blend of PP, ABS, and LDPE are presented. Variation of impact strength and the fracture surface morphology with blend composition is examined and interpreted. Tensile behavior in the yield region is studied and the trends of variation of work of yield and impact strength are compared to ascertain the predominent mechanism of impact toughening in these binary and ternary blends. An analysis of yield–stress data in terms of theoretical models is presented to reveal the differences in these binary and ternary blends, attributable to the role of LDPE component in the ternary blend.  相似文献   

4.
Various amounts of a styrene-butadiene-based triblock copolymer (SEBS) was used to compatibilize immiscible blends of high density polyethylene (HDPE) and an amorphous glassy phase consisting of either pure polystyrene (PS) or a miscible blend of PS and a polyether copolymer (PEC). PEC is structurally similar to poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). Mechanical properties were determined for blends fabricated by injection and compression molding. The inherently brittle two-phase HDPE/(PEC/PS) blends show significant increases in ductility and impact strength resulting from addition of SEBS. These improvements coincide with a slight loss in modulus and yield strength. If the amount of HDPE and SEBS is held constant, impact strength and ductility increase with the amount of PEC in the glassy phase. These trends evidently result from the added ductility of glassy phases containing PEC and perhaps from better interfacial adhesion in blends after adding SEBS. The latter stems from the thermodynamic miscibility between PEC and PS endblocks of SEBS which provide an enthalpic driving force for compatibilization. Differences between the properties of compression and injection-molded blends can be attributed to the degree of crystallinity and orientation induced during molding.  相似文献   

5.
In this study, polystyrene–hydrogenated polybutadiene–polystyrene (SEBS) triblock copolymer was used as a compatibilizer for the blends of polystyrene (PS) and high-density polyethylene (HDPE). The morphology and static mechanical and impact properties of the blends were investigated by means of scanning electron microscopy, uniaxial tension, and instrumented falling-weight impact measurements. Tensile tests showed that the yield strength of the PS/HDPE/SEBS blends decreases considerably with increasing HDPE content. However, the elongation at break of the blends tended to increase significantly with increasing HDPE content. The excellent tensile ductility of the HDPE-rich blends resulted from shield yielding of the matrix. Charpy impact measurements indicated that the impact strength of the blends increases slowly with HDPE content up to 50 wt %; thereafter, it increases sharply with increasing HDPE content. The impact energy of the HDPE-rich blends exceeded that of pure HDPE, implying that the HDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of SEBS compatibilizer. The correlation between the impact property and morphology of the blends is discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1099–1108, 1998  相似文献   

6.
Immiscible blends of high density polyethylene (HDPE) and an amorphous glassy phase consisting of either pure polystyrene (PS) or a miscible blend of PS and a polyether copolymer (PEC) were compatibilized with various amounts of a styrene-hydrogenated butadiene block copolymer (SEBS). PEC is structurally similar to poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). Using a liquid displacement stress dilatometer, the volume change of samples during uniaxial mechanical straining was determined and related to the various modes of deformation. Blends were fabricated by both injection and compression molding. Miscible PEC and PS blends were found to undergo a craze to shear yielding transition between 40 and 60% PS, which occurred at higher PS concentrations as SEBS was added. Blends with a HDPE matrix and a dispersed glassy phase showed reduced volume dilatation on adding SEBS, indicating better interfacial adhesion between the incompatible blend components. Increases in the sample volume were substantially less in blends with a PEC/PS glassy phase instead of pure PS, suggesting more effective compatibilization by the SEBS copolymer in blends with PEC. This trend is presumed to stem from an exothermic heat of mixing between the PS endblocks of SEBS and the PEC-rich phases in the blend. Microscopic evidence of the improved adhesion and modes of deformation agrees with the results obtained by dilatometry. The volume dilatation of compression-molded materials do not seem to be similarly affected by the composition of the glassy phase which may reflect morphological differences between injection-and compression-molded blends.  相似文献   

7.
In this study, immiscible blends of HDPE and an amorphous glassy polymer were compatibilized with styrene-hydrogenated butadiene block copolymers. The glassy phase consisted of either pure PS or a miscible blend of PS and polyether copolymer (PEC); PEC is similar to poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). The morphology of these two-phase mixtures depended on physical characteristics of the components and the method of fabrication. Suitable copolymers increased the degree of dispersion and minimized heterogeneities resulting from the inherent incompatibility of the individual phases. Further reduction in the phase size and increased adhesion between the components of modified blends were achieved by increasing the composition of PEC in the glassy phase. It was concluded that favorable exothermic mixing between PEC and PS endblocks of the copolymers provided an additional driving force for compatibilization. Results from dynamic mechanical thermal analysis suggests that penetration by the copolymers into the homopolymer phases is not complete.  相似文献   

8.
Studies are presented on melt rheological properties of binary blend of polypropylene (PP) and acrylonitrile–butadiene–styrene terpolymer (ABS), and ternary blend of PP, ABS, and low-den-sity polyethylene (LDPE). Data obtained in capillary rheometer are presented to describe the effect of blending ratio, shear stress, and shear rate on flow properties, melt viscosity, and melt elasticity. At a blend composition corresponding to 10 wt % ABS content, both binary and ternary blends show maximum in melt viscosity accompanied by minimum in melt elasticity. Pseudoplasticity of the melt decreases with increasing ABS content. In ternary blends, LDPE facilitates the flow at low LDPE contents and obstructs the flow at high LDPE contents. Scanning electron microscopic studies are also presented to illustrate the state of dispersion and its variation with blend composition.  相似文献   

9.
The tensile properties and morphology of the polyolefin ternary blends of ethylenepropylene–diene terpolymer (EPDM), polypropylene and high density polyethylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE under shear with dicumyl peroxide (DCP). For comparison, blends were also prepared from EPDM which was dynamically cured alone and blended with PP and HDPE later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastics composition was studied. The tensile strength and modulus increased with increasing DCP concentration in the blends of EPDM-rich compositions but decreased with increasing DCP concentration in blends of PP-rich compositions. In the morphological analysis by scanning electron microscopy (SEM), the small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic curing process could reduce the domain size of the crosslinked EPDM phase. When the EPDM forms the matrix, the phase separation effect becomes dominant between the EPDM matrix and PP or HDPE domain due to the crosslinking in the matrix.  相似文献   

10.
Polypropylene (PP) was added to a co‐continuous blend of polystyrene (PS) and styrene‐ethylene/butylene‐styrene (SEBS) to investigate the effect of PP on the morphology and rheological behavior of PS/SEBS blends. For this purpose, a reference blend of 50 wt% PS and 50 wt% SEBS was chosen and an isotactic PP was added to it by increments of 10 wt% up to a maximum of 50 wt% of the total weight. Environmental SEM (ESEM) studies on the PS/SEBS/PP blends showed that PP could be added up to 10 wt% without changing the morphology of the co‐continuous PS/SEBS blend, whereas at 20 wt% PP formed a separate discrete phase. The discrete PP phase finally formed a fully developed matrix structure from 40 wt% onwards. Dynamic rheological measurements showed that at low frequencies the storage modulus was largely unaffected by addition of PP in small concentrations (up to 10 wt%), showing a significant effect of the PP/SEBS interface at low deformation rates. Melt strength tests on the PS/SEBS/PP blends showed the existence of a proportional correlation with their corresponding storage moduli, measured at frequencies from 10–100 rad/s. POLYM. ENG. SCI., 45:1432–1444, 2005. © 2005 Society of Plastics Engineers  相似文献   

11.
In this work, ternary polymer blends based on polypropylene (PP)/polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) triblock copolymer and a reactive maleic anhydride grafted SEBS (SEBS‐g‐MAH) at fixed compositions are prepared using twin‐screw extruder at different levels of die temperature (235‐245‐255°C), screw speed (70‐100‐130 rpm), and blending sequence (M1‐M2‐M3). In M1 procedure, all of the components are dry blended and extruded simultaneously using Brabender twin‐screw extruder, whereas in M2 procedure, PC, SEBS, and SEBS‐g‐MAH minor phases are first preblended in twin‐screw extruder and after granulating are added to PP continuous phase in twin‐screw extruder. Consequently, in M3 procedure, PP and SEBS‐g‐MAH are first preblended and then are extruded with other components. The influence of these parameters as processing conditions on mechanical properties of PP/PC/SEBS ternary blends is investigated using L9 Taguchi experimental design. The responding variables are impact strength and tensile properties (Young's modulus and yield stress), which are influenced by the morphology of ternary blend, and the results are used to perform the analysis of mean effect as well. It is shown that the resulted morphology, tensile properties, and impact strength are influenced by extrusion variables. Additionally, the optimum processing conditions of ternary PP/PC/SEBS blends were achieved via Taguchi analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The effect of compatibilization on the morphology, mechanical properties, and dynamic mechanical properties of isotactic polypropylene (IPP)/nylon-6 (Ny-6) binary blends was investigated. Maleic anhydride (MAH) functionalized IPP was used as a compatibilizer in binary blends. The morphological, mechanical, and dynamic mechanical properties of binary and ternary blends were compared. The blends containing IPP-g-MAH showed more regular and finer dispersion of phases, different dynamic properties, and improved mechanical properties due to better adhesion between the two phases. The blends were also characterized for their flow properties and extent of water absorption. The melting peak temperature and percent crystallinity of IPP and Ny-6 phases were decreased in compatibilized blends. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The tensile behavior of blends of linear polyethylene (PE) and isotactic polypropylene (PP) was examined in relation to their morphology. Yield stress increases monotonically with increasing PP content, while true ultimate strength is much lower in all blends than in the pure polymers as a result of early fracture. The blends fail at low elongation because of their two-phase structure, consisting of interpenetrating networks or of islands of PE in a PP matrix, as shown by scanning electron microscopy of fracture surfaces and transmission electron microscopy of thin films. While spherulites in PP are very large (~100 μm in diameter), addition of 10% or more of PE drastically reduces their average size. This, together with the profusion of intercrystalline links introduced by PE, may be associated with maximization of tensile modulus in blends containing ~80% PP. Introduction of special nucleating agents to PP reduces average spherulite size and is accompanied by slight improvements in modulus. Thin films of blends strained in the electron microscope neck and fibrillate in their PE regions, but fracture cleanly with little fibrillation in areas of PP.  相似文献   

14.
Summary A universally accepted criterion when assessing blend compatibility is the existence of a single glass transition temperature, which changes as a function of blend composition. Differential scanning calorimetry and dynamic mechanical strain spectra are powerful tools in the study of polymer relaxation in the glass transition zone. In this research both techniques are employed to determine the glass transition temperatures of a series of polymer blends based on polyvinylidene fluoride. In the light of the data obtained further thought is given to the discrepancies between the results obtained with one and the other method, as well as to the compatibility of the experimental blends.  相似文献   

15.
Ternary blends, based on 70% by weight of polypropylene (PP) with 30% by weight of a dispersed phase, consisting of 15% polyamide-6 (PA6) and 15% of a mixture comprising varying ratios of an unreactive poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer and a reactive maleic anhydride-grafted SEBS-g-MA, were produced via melt blending in a co-rotating twin-screw extruder. TEM revealed the blend containing only non-reactive SEBS to exhibit individual PA6 and SEBS dispersed phases. However, the progressive replacement of SEBS with reactive SEBS-g-MA increased the degree of interfacial reaction between the SEBS and PA6 phases, thus reducing interfacial tension and providing a driving force for encapsulation of the PA6 by the SEBS. Consequently, the dispersed-phase morphology was observed to transform from two separate phases to acorn-type composite particles, then to individual core-shell particles and finally to agglomerates of the core-shell particles. The resultant blends exhibited significant morphology-induced variations in both thermal and mechanical properties. DSC showed that blends in which the diameter of the PA6 particles was reduced to ≤3 μm by the increasing interfacial reaction exhibited fractionated PA6 crystallisation. In general, mechanical testing showed the blends to exhibit inferior low-strain tensile properties (modulus and yield stress) compared to the matrix PP, but superior ultimate tensile properties (stress and strain at break) and impact strength. These changes are discussed with reference to composite models.  相似文献   

16.
Blends of poly(styrene)-block-poly(ethene-co-but-1-ene)-block-poly(styrene) (SEBS) with isotactic polypropylene (PP) and syndiotactic PP, respectively, were investigated. The morphology was observed by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The cryofracture surfaces studied by SEM did not show any particles that were pulled out, so that a good compatibility between SEBS and different PPs could be assumed. The multiphase character of the blends could be well detected by TEM of RuO4 stained samples. TEM micrographs of two-layer specimens revealed that SEBS tends to diffuse into the PP phase under formation of micelles. The block copolymer shows a reorientation phenomenon of large domains at the interface before the diffusion into the PP phase occurs. The interfacial strength as a function of annealing time was measured by a peel test of two-layer specimens. Mechanical properties are studied and related to the blend morphology. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The state of dispersion of poly(ethylene-co-propylene) (PEP) rubber and high-density polyethylene (HDPE) in polypropylene (PP) blends was investigated using scanning electron microscopy to examine solvent-etched microtomed surfaces cut at low temperatures. The validity of the method was established by comparing the areal fraction of dispersed particles in micrographs with the volume fraction of PEP and HDPE in PP-rich blends. When small amounts of PEP and HDPE were added to PP, they combined to form composite PEP–HDPE particles with characteristic internal structures in a PP matrix. Changes in impact strength and flexural modulus with changes in mixing conditions and blend composition were determined and interpreted in terms of the size, composition, and internal structure of the dispersed particles. Particle growth in the melt limited the impact strength level achieved in molded articles. A simple model proposed for screening rubbers for toughening of brittle plastics successfully predicts that PEP rubber should be an excellent impact modifier for PP.  相似文献   

18.
Biaxially oriented films of blends of high-density polyethylene (HDPE) with polypropylene (PP) homopolymer and PP copolymers prepared by twin-screw extrusion and lab-stretcher have been investigated by scanning electron microscopy (SEM), polarized microscopy, differential-scanning calorimeter, and universal testing machine. Three different kinds of PP copolymers were used: (i) ethylene–propylene (EP) random copolymer; (ii) ethylene–propylene (EP) block copolymer; (iii) ethylene–propylene–buttylene (EPB) terpolymer. In the SEM study of the morphology of films of HDPE with various PP blends, phase separation is observed between the PP phase and the HDPE phase for all blends and compositions. In all blends, HDPE serves to reduce the average spherulites size, probably acting as a nucleating agent for PP. The reduction of spherulite size appeared most significantly in the blend of EPB terpolymer and HDPE. A large increase of crystallization temperature was found in the blend of EPB terpolymer and HDPE compared with the unblended EPB terpolymer. For the blend of EPB terpolymer and HDPE, the improvement of tensile strength and modulus is observed with an increase of HDPE content, and this can be considered as a result of the role of HDPE in reducing average spherulite size. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
The effect of selective crosslinking of the unsaturated elastomer particles in polypropylene (PP) matrix was investigated. The crosslink system comprised N,N′-m-phenylene-bismaleimide and 6-ethoxy-2,2,4-trimethyl-1,2-dihydroqinoline or polymerized-(2,2,4-trimethyl-1,2-dihydroquinoline). The system, which produces only carbon radicals, crosslinks the elastomer particles selectively without causing excessive degradation of the PP matrix. The reaction was carried out under a dynamic crosslinking process using a twin extruder on PP/EPDM, PP/SBS, and PP/SIS blends, all of which comprised 80 wt % of PP and 20 wt % of the elastomer. After the crosslinking, the impact strength of the blends increased. Especially remarkable increase is obtained at 23°C where PP is above its Tg. The increase of interfacial adhesion caused by production of PP/elastomer graft copolymer at the interface is considered to be the most important factor in the improvement. It permits the interactions of the stress concentrate zone developed at the elastomer particles and causes shear yielding of the PP matrix. Impact fracture energy absorption can be thus changed by adjusting the degree of the interfacial adhesion even at essentially the same morphology. The crosslinked elastomer particles also play the role of a nucleation agent. The selective cross-linking of the elastomer particles in PP/elastomer blends is demonstrated to be an excellent technique to produce a high-impact, high-modulus PP. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Isotactic polypropylene (PP) has been reactively blended with various grades of an ethylene–octene copolymer (EOC) in a twin‐screw extruder. Free radical polymerization of styrene and a multifunctional acrylate during melt extrusion has resulted in an enhancement of mechanical properties over the binary blend. The reactive blend exhibits a notched Izod impact strength over 12 times that of pure polypropylene and greater than double the performance of the binary blend. Electron microscopy shows that by grafting onto the polymers, elastomer particle size and interparticle distance decrease, while particle shape becomes less spherical. The acrylate is crucial to achieve superior performance, as infrared spectra correlate an increase in graft yield to improvements in stress–strain behavior and impact strength. In addition, melt flow index (MFI) and melt strength data indicate a reduction in unwanted side reactions of polypropylene and the presence of long‐chain branching. Dynamic‐mechanical analysis reveals that the reaction promotes miscibility between polypropylene and the EOC and reduces molecular mobility at their glass‐transition temperatures. Mechanical properties, graft yield, and MFI are shown to be highly dependent upon the elastomer's concentration, density, and molecular weight, initiator and monomer concentration, as well as processing temperature. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号