首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of phenol biodegradation in high salt solutions   总被引:18,自引:0,他引:18  
Peyton BM  Wilson T  Yonge DR 《Water research》2002,36(19):4811-4820
Biological treatment of high-salinity industrial wastewaters using halophilic bacteria can be used to remove organic compounds without first decreasing the salt concentration. While halophilic degradation of phenol and other organics has been investigated, there exists a general absence of kinetic data in current literature to allow evaluation of this treatment alternative. Liquid, soil and sediment samples were collected from three distinct saline environments in the western United States. Samples were enriched in media containing 10% (w/v) NaCl at pH 7.0, with phenol as a substrate. Mixed culture batch experiments were conducted at 30 degrees C with initial phenol concentrations of 50 mg/L. Evaluation of phenol degradation and corresponding cell growth data with Monod and Andrews models indicated that the kinetics were zero-order with respect to phenol. Zero-order specific growth rates ranged from 0.22 to 0.32 h(-1), while observed cell yields were 0.18-0.28 mg cell protein/mg phenol for the five cultures. For one of the cultures, phenol degradation rates were also quantified at concentrations of up to 320 mg/L. Under these conditions, specific growth rates ranged from 0.09 to 0.22 h(-1), decreasing with increasing initial phenol concentrations. Cell yields at these higher initial phenol concentrations ranged from 0.20 to 0.29 mg cell protein/mg phenol.  相似文献   

2.
The results of a study on adsorption of phenol in granite residual soil and kaolinite are presented. Experiments were conducted using batch adsorption procedures at low phenol concentrations, i.e. from 0.8 to 10 mg/L, and at higher concentrations, i.e. from 10 to 100 mg/L. The interactions have been studied with respect to the linear, Freundlich and Langmuir adsorption isotherms. It is found that the residual soil possesses greater adsorption capacity compared to that of kaolinite. For example, the linear partition coefficient, K d , for the residual soil–phenol interaction is about 10.48 L/kg while the corresponding value for the kaolinite–phenol system is 1.18 L/kg. The highly non-linear relationship, which covers the whole set of data, was transformed linearly using the linearized Freundlich and Langmuir isotherms. The linearized Langmuir plot for low concentration data may be used to estimate the maximum adsorption capacity of the soil. From limited studies it is also concluded that the granite residual soil has a great potential for use as a soil liner material.   相似文献   

3.
In order to distinguish between aerobic biodegradation of synthetic polymers in fresh and seawater, polyethylene glycols (PEGs) were systematically and comparatively investigated in inocula from municipal wastewater and seawater aquarium filters for the first time. The molecular weight (MW) of the PEGs, (HO(CH(2)CH(2)O)(n)H, n=3-1350) as representatives of water-soluble polymers, ranged from 250 to 57,800Da. The biodegradation was observed by removal of dissolved organic carbon and carbon dioxide production by applying standardized ISO and OECD test methods. Specific analyses using liquid chromatography mass spectrometry (LC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were performed. All PEGs selected were completely biodegradable in freshwater media within 65d. PEGs with an MW up to 14,600Da have a similar degradation pathway which is characterized by gradual splitting of C(2)-units off the chain resulting in formation of short-chain PEGs. In artificial seawater media, full biodegradation of PEGs up to 7400Da required more time than in freshwater. PEGs with MW 10,300 and 14,600Da were only partially degraded whereas PEGs with MW 26,600 and 57,800Da were not degraded for a period of 135d. The biodegradation pathway of PEG 250 and PEG 970 in seawater is similar to that for freshwater. For PEGs having an MW from 2000 to 10,300Da, the degradation pathway in seawater differs from the pathway of the shorter PEGs.  相似文献   

4.
5.
Microbiological degradation of the racemic mixture, the enantiopure R- and S-fipronil was examined under both aerobic and flooded conditions in three Chinese paddy soils. The degradation kinectics and enantiomer fraction (EF) were determined by means of high-performance liquid chromatography (HPLC) with chiral Chiralcel OD-H column, while desulfinyl, sulfone and sulfide derivatives were monitored by reversed phase HPLC with diode array detection (DAD). The degradation/transformation of enantiomers of fipronil in the three live soils under aerobic and flooded conditions generally complied with the first-order kinetics (R2 > or = 0.94). The calculated t1/2 values of the enantiomers of fipronil ranged between 21 and 34 days for aerobic incubation experiments and between 8 and 19 days under flooded conditions incubation, respectively. The calculated EF values of fipronil during the incubation time were all close to 0.5, indicating that the degradation/transformation of fipronil was almost nonenantioselective. The main metabolites of fipronil formed in the incubation experiments were sulfone and sulfide derivatives by oxidative and reductive processes, respectively. The oxidative pathway seemed more active. Under flooded conditions, S-fipronil was preferentially degraded in the three soil samples used. The main metabolite was determined as fipronil sulfide. In control experiments, almost no removal of enantiomers of fipronil was observed indicating that the degradation of fipronil in the paddy soil used was attributed to microbial mediated processes under both aerobic and flooded conditions. In addition, no enantiomerization of fipronil was observed in the soil samples examined under both aerobic and flooded conditions. These results for major differences in the degradation of the enantiomers as well as the formation of toxic metabolites may have some implications for better environmental and ecological risks assessment for chiral pesticides.  相似文献   

6.
Juang RS  Tsai SY 《Water research》2006,40(19):3517-3526
A polypropylene (PP) hollow fiber membrane contactor was used as a reactor to enhance the biodegradation of equimolar phenol and sodium salicylate (SA) by Pseudomonas putida CCRC 14365 at 30 degrees C and pH 7. Experiments were performed at a fixed initial cell density of 0.025 g/L and in the total substrate level range 5.32-63.8 mM. The degradation experiments by free cells were also studied for comparison. With pristine hydrophobic fibers, the degradation of SA was started only after phenol was completely consumed. Substrate inhibitory effect was avoided due to sufficiently low substrate levels in the cell medium; however, the biodegradation was time consuming. With ethanol-wetted fibers, both substrates were completely degraded much faster than the use of pristine fibers. Although the wetted fibers were unable to prevent movement of substrates through the pores, biofilm formed on the outer surfaces of the fibers could enhance the tolerance limit of substrate toxicity. This greatly extended the treatment range to high-level substrate mixtures, as long as the water was nearly neutral and free of concentrated inorganic salts.  相似文献   

7.
Adsorption equilibriums of principal herbicides on paddy soils in Japan   总被引:4,自引:0,他引:4  
Herbicides used in paddy fields during the flooding season can easily cause pollution by run-off into rivers or by other routes. It is very important to know the adsorption characteristics that influence their fate in the soil. The adsorption equilibriums have often been expressed by Henry equations, and the values of equilibrium constant, Kd, are estimated from the adsorption constants, K(OC), based on organic carbon contents of soils. There is little information concerning the equilibrium values expressed by the Freundlich equations, and insufficient information on the actual concentration levels in the paddy field. Therefore, adsorption equilibriums of the five principal herbicides: esprocarb, mefenacet, pretilachlor, simetryn and thiobencarb, on five kinds of paddy soil in Japan were investigated. It was found that their equilibrium values were better expressed by the Freundlich equation for concentration levels for the paddy fields, and that the values for the adsorption coefficient, n, varied from 1.0 to 1.6. Values for the coefficient, k, were in the range of 29-420 mg(1 - 1/n) l(1/n)/kg-dry, and the values were poorly related to solubilities in water or to the octanol-water partition coefficients of the herbicides. For each herbicide, except for simetryn, the values of k among the soils differed by 2-3 times, and no correlation could be found with the organic carbon contents, specific surface areas, pH, cation exchange capacity or major minerals of the soils. The adsorption equilibriums calculated from the values of adsorption constant Kd by the values of K(OC) in the literature were found to be very different from the experimental equilibriums. From the experimental values of coefficient k and n of the Freundlich equation, the maximum runoff concentrations of the herbicides were preliminarily estimated by a simple equilibrium model.  相似文献   

8.
The present investigation aims at estimating the biodegradation coefficients of surfactants. The biodegradabilities of Triton X-100 and Rhamnolipid were tested under aerobic, nitrate reducing, sulphate reducing and anaerobic conditions using a respirometer. The results indicated that in terms of biodegradability, Rhamnolipid is superior to Triton X-100, since it is biodegradable under all conditions, whereas Triton X-100 is partially biodegradable under aerobic conditions and non-biodegradable under anaerobic, nitrate reducing and sulphate reducing conditions.  相似文献   

9.
《Water research》1996,30(6):1353-1360
Phenol in wastewater could be effectively degraded in an upflow anaerobic sludge blanket (UASB) reactor. With a 1:1 effluent recycle ratio, over 97% of phenol was removed at 37°C and pH 6.9-7.5 with 12 h of hydraulic retention time for phenol concentration up to 1260 mg·1−1, corresponding to 3000 mg·1−1 of chemical oxygen demand (COD) and a loading rate of 6 g-COD·1−1·day−1. The seed sludge took about 7 wk to develop the phenol-degrading capability which was sensitive to shocks. The bioactivity deteriorated readily when the granules were exposed to sudden changes of temperature and loading. Although the damage was not permanent, the recovery of bioactivity was gradual and lengthy. At 6 g-COD·1−1·day−1, each gram of granules was able to convert 0.49 g of COD into methane daily. On the average, about 94.7% of the total COD removed was converted to methane, while the rest was converted to biomass with a net yield of 0.038 g-VSS·(g-COD-removed)−1. Electron micrographs show that the granules were composed of, among others, Syntrophus buswellii-, Methanothrix-, Methanospirillum- and Methanobrevibacter-like bacteria.  相似文献   

10.
This paper describes laboratory scale results of aerobic and anaerobic biological treatment studies conducted to evaluate the feasibility of treating ground water contaminated with an organic solvent consisting of an equal weight‐mixture of methylethylketone and cyclohexanone. For this purpose, three alternatives were considered, namely a single‐stage anaerobic baffled reactor, an activated sludge system, and an aerated lagoon. The study focused on determining and comparing the treatment efficiency of each of the three treatment processes under similar operating conditions. Aerobic processes proved to be more effective in treating the organically contaminated groundwater.  相似文献   

11.
Cinar O  Grady CP 《Water research》2001,35(4):1015-1021
Aromatic organic compounds are degraded by different enzyme systems under aerobic and anoxic conditions. This raises the question of how bacteria in biological nitrogen removal processes, which cycle bacteria between aerobic and anoxic environments, regulate their enzyme systems for degrading aromatic compounds. As a first step in answering that question, mixed microbial communities were grown on benzoate as sole carbon source in chemostats under fully aerobic and fully anoxic (nitrate as the electron acceptor) conditions and tested for their ability to degrade benzoate in batch reactors after exposure to aerobic or anoxic conditions in the absence of substrate. Aerobically grown biomass retained its ability to degrade benzoate without loss of activity after endogenous exposure to aerobic conditions for up to 8 h. However, when exposed to anoxic conditions, the biomass rapidly lost its aerobic benzoate degrading activity, retaining less than 20% of the initial activity after 8 h. Similarly, anoxically grown biomass retained its ability to degrade benzoate without loss of activity after endogenous exposure to anoxic conditions for up to 8 h. However, when anoxically grown biomass was exposed to aerobic conditions, only 20% of its initial activity was lost in the first 2 h, after which the remaining activity was retained for up to 8 h. Similar experiments with pyruvate showed that the 20% loss of activity was not due to loss of denitrifying enzymes, suggesting that it was due to loss of catabolic enzymes.  相似文献   

12.
The mutagenicity of water, including herbicide CNP, and its time-variation during anaerobic biodegradation were studied through Ames assay using strains with or without. S9 mix: TA98, TA 100, YG1021, YG1024, YG1026, and YG1029. The bacteria, for the anaerobic biodegradation, was obtained from a paddy field, and preincubated for a month. The CNP was decomposed in an anaerobic culture inoculated with the bacteria, and finally yielded CNP-amino as one of the CNP metabolites. About 16% of the initial CNP was transformed into CNP-amino by the 14th day. The mutagenicities to TA98. YG1024, and YG1029 strains with S9 mix increased with cultivating time, the latter two showed the strongest sensitivity to CNP-amino. The contribution of CNP to the mutagenicity decreased as the chemical decomposed, while the contribution of CNP-amino increased. However, the increased mutagenicity was not limited to the contribution of CNP-amino. but also to the contribution of other metabolites. The contributions of other CNP metabolites were 67% of total mutagenicity to the TA98 strain and 30% to the YG1029 strain. These unknown mutagenic metabolites were the indirect frameshift mutagens which did not have nitro- and amino-substituents, and the indirect base-pair mutagens which might possibly have some amino-substituents.  相似文献   

13.
Phenol and seven alkylphenols (o-, m- and p-cresol, 2.5-, 2.6-, 3.4- and 3,5-dimethylphenol) were added at various concentrations to aliquots of domestic anaerobic sludge in Hungate serum bottles and these were incubated at 37°C. The concentration of methane in the headspace gas was monitored to determine if the phenolics were fermented to methane or if they inhibited the anaerobic process. Only phenol and p-cresol were fermented to methane. At 500 mg l−1 (but not at 300 mg l−1) 2,5-, 3,4- and 3,5-dimethylphenol reduced the rate and the amount of methane produced. The cresols were inhibitory at 1000 mg l−1 but not at 400 mg l−1.In cultures supplemented with acetate and propionate (VOA), and in unsupplemented cultures, phenol at concentrations up to 500 mg l−1 was fermented to methane. Between 800 and 1200 mg l−1 phenol, methane production was neither enhanced nor inhibited relative to control cultures containing no phenol. Inhibition of methane production was evident when phenol was present at 2000 mg l−1. Thus the methanogens are less susceptible to phenol inhibition than are the phenol-degrading acid formers. In similar experiments with p-cresol: enhanced methane production was observed at concentrations of 400 mg l−1; no enhancement or inhibition was observed at 600 mg l−1; and inhibition was noted when p-cresol was present at 1000 mg l−1.  相似文献   

14.
Phenol is a common wastewater contaminant from various industrial processes, including petrochemical refineries and chemical compounds production. Due to its toxicity to microbial activity, it can affect the efficiency of biological wastewater treatment processes. In this study, the efficiency of an Anaerobic Sequencing Batch Reactor (ASBR) fed with increasing phenol concentrations (from 120 to 1200 mg L−1) was assessed and the relationship between phenol degradation capacity and the microbial community structure was evaluated. Up to a feeding concentration of 800 mg L−1, the initial degradation rate steadily increased with phenol concentration (up to 180 mg L−1 d−1) and the elimination capacity remained relatively constant around 27 mg phenol removed?gVSS−1 d−1. Operation at higher concentrations (1200 mg L−1) resulted in a still efficient but slower process: the elimination capacity and the initial degradation rate decreased to, respectively, 11 mg phenol removed?gVSS−1 d−1 and 154 mg L−1 d−1. As revealed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, the increase of phenol concentration induced level-dependent structural modifications of the community composition which suggest an adaptation process. The increase of phenol concentration from 120 to 800 mg L−1 had little effect on the community structure, while it involved drastic structural changes when increasing from 800 to 1200 mg L−1, including a strong community structure shift, suggesting the specialization of the community through the emergence and selection of most adapted phylotypes. The thresholds of structural and functional disturbances were similar, suggesting the correlation of degradation performance and community structure. The Canonical Correspondence Analysis (CCA) confirmed that the ASBR functional performance was essentially driven by specific community traits. Under the highest feeding concentration, the most abundant ribotype probably involved in successful phenol degradation at 1200 mg L−1 was affiliated to the Anaerolineaceae family.  相似文献   

15.
Davis JW  Gonsior S  Marty G  Ariano J 《Water research》2005,39(6):1075-1084
The biological transformation of hexabromocyclododecane (HBCD), a brominated fire retardant commonly used in a variety of consumer goods, was investigated in aerobic and anaerobic soils and freshwater sediments. Soil, river water, and aquatic sediments were collected from several locations in the United States and transformation of HBCD was evaluated in the correspondingly composed microcosms based on the Organisation for Economic Co-Operation and Development (OECD) Test Guidelines 307 (Aerobic and Anaerobic Transformation in Soil) or 308 (Aerobic and Anaerobic Transformation in Aquatic Sediment Systems). Soil and sediment reaction mixtures, prepared under either aerobic or anoxic conditions, were dosed with HBCD at a concentration ranging from approximately 10 to 80 ng/g dry weight. The soils and sediments were then placed at 20 degrees C for approximately 4 months and the concentration of HBCD in the microcosms was determined at selected time intervals utilizing high-performance liquid chromatography-mass spectrometry (LC-MS). HBCD loss was observed in both the aerobic and anaerobic soils and sediments although the rates were appreciable faster under anoxic conditions. Biologically mediated transformation processes (i.e., biotransformation) accelerated the rate of loss of HBCD when compared to the biologically inhibited (i.e., autoclaved) soils and sediments. Biotransformation half-lives for HBCD were determined to be 63 and 6.9 days in the aerobic and anaerobic soils, respectively, while biotransformation half-lives for HBCD in the two river systems ranged from 11 to 32 days and 1.1 to 1.5 days under aerobic and anaerobic conditions, respectively. Brominated degradation products were not detected in any of the soils or sediments during the course of the study.  相似文献   

16.
Lee PH  Ong SK  Golchin J  Nelson GL 《Water research》2001,35(16):3941-3949
Bioremediation of coal tar-contaminated soils containing polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs. Five coal tar-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with two solvents, acetone and ethanol to enhance the bioavailability of the PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactors. The total PAH degradation rates for soils pretreated with solvents were estimated to be about two times faster than soils that were not pretreated with solvents. For example, the total PAH first order degradation rate constants were 0.165+/-0.032, 0.147+/-0.020, and 0.076+/-0.009 day(-1) for Vandalia (EXC) soil that were pretreated with acetone, ethanol, and with no solvent, respectively. A distinctive advantage for soils pretreated with solvents was the enhanced removal of 5-ring PAH compounds such as benzo(a)pyrene and to a limited extent 4-ring compounds such as chrysene. Even for soils with 3.5% or more organic carbon content (two soils out of five), the degradation rate constants of chrysene were found to be two times faster than soils that were not pretreated. The degradation rate constants of benzo(a)pyrene were enhanced by 2-6 times for all five contaminated soils that were pretreated with solvents. To further elucidate trends that control the solvent treatment, the percent improvement in degradation rate constants (100 x rate constants for pretreated soils/rate constants for non-treated soils) for 16 PAHs were found to correlate well with the PAH partition coefficients (K(oc)). Except for phenanthrene and the clay fraction of the soil, correlations between the percent improvement in degradation rates constants and several physical properties of the soils were poor and sporadic. This implies that the enhancement in PAH availability using solvent treatment was driven by the distribution of the PAHs between the solvent and the adsorbed PAHs.  相似文献   

17.
Aerobic degradation of ethyl tert-butyl ether (ETBE), Methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME), as tertiary-substrates, was studied in a continuous upflow fixed-bed reactor (UFBR) using an external oxygenator and sintered glass rings as biomass carriers. The UFBR has been shown to be an effective system for the simultaneous and continuous long-term degradation of the three-oxygenates mixture as sole source of carbon and energy. Therefore, the oxygenates feed concentration must be related in conjunction with the hydraulic retention time "HRT" and vice versa. The permissible feed concentration of both MTBE and TAME to achieve more than 99% removal efficiency is about 80 mg L-1 at a constant HRT of 24 h. The same performance can be obtained if the HRT kept at a value equal or above to 15 h for a feed concentration of about 80 mg L-1 of both MTBE and TAME. However, the ETBE removal efficiency was always greater than 99% whatever the ETBE concentration feed (between 10 and 100 mg L-1 at a constant HRT of 24 h) and the HRT (between 24 and 13 h at a constant concentration feed of about 80 mg L-1) tested in this study. The highest ETBE, MTBE and TAME removal rates achieved throughout the UFBR runs, with efficiency better than 99%, were 140 +/- 5, 132 +/- 2 and 135 +/- 2 mg L-1 d-1, respectively. No metabolic intermediates including tert-butyl alcohol (TBA), tert-butyl formate (TBF) and tert-amyl alcohol (TAA) were detected in the effluent during all the reactor runs. Furthermore, based on the chemical oxygen demand balance, all the removed oxygenates were completely metabolized. The results of this study suggest that the higher resistance to biodegradation exhibited by the MTBE and the TAME is probably due to the steric hindrance for the attacking enzyme(s); and the major limiting step to the oxygenate degradation maybe the accessibility and the cleavage of the ether bond, but not the assimilation of their major metabolites such as TBA, TBF and TAA. These results were concomitant with the batch tests using the reactor's immobilized biomass as inoculum.  相似文献   

18.
Previous studies have indicated that raingardens are effective at removing petroleum hydrocarbons from stormwater. There are concerns, however, that petroleum hydrocarbons could accumulate in raingarden soil, potentially resulting in liability for the site owner. In this work, 75 soil samples were collected from 58 raingardens and 4 upland (i.e., control) sites in the Minneapolis, Minnesota area, representing a range of raingarden ages and catchment land uses. Total petroleum hydrocarbon (TPH) concentrations in the samples were quantified, as were 16S rRNA genes for Bacteria and two functional genes that encode for enzymes used in the degradation of petroleum hydrocarbons. TPH levels in all of the raingarden soil samples were low (<3 μg/kg) and not significantly different from one another. The TPH concentration in raingarden soil samples was, however, significantly greater (p ≤ 0.002) than TPH levels in upland sites. In addition, the number of copies of Bacteria 16S rRNA genes and functional genes were greater in the raingardens planted with deeply-rooted natives and cultivars than in raingardens containing simply turf grass or mulch (p < 0.036), suggesting that planted raingardens may be better able to assimilate TPH inputs. The ability of microorganisms present in the soil samples to degrade a representative petroleum hydrocarbon (naphthalene) was also investigated in batch experiments. A sub-set of the field sites was selected for re-sampling, and all soil samples tested (n = 8) were able to mineralize naphthalene. In these experiments the initial mineralization rate correlated with the number of copies of Bacteria 16S rRNA genes present.  相似文献   

19.
The rate of phenol degradation by activated sludge was studied in a completely mixed continuous-flow reactor with sludge recycle, operated at steady-state conditions at 20°C. Monod kinetics was followed when the influent concentration (Cs°) was kept constant. When using different Cs° levels, the phenol removal rate was found to have an inverse dependence on Cs°. It is suggested that this kinetic anomaly is due to inhibition of the biooxidation by some secondary reaction product(s). A kinetic model based on this concept is able to interpret experimental facts.  相似文献   

20.
《Water research》1986,20(7):929-933
Methanogenic consortia which were able to degrade phenol and p-cresol were enriched from domestic sewage sludge. One duplicate set of these served as a control and was maintained on a feed solution containing all of the following components; (i) phenolics; (ii) a mixture of B vitamins; (iii) mineral solution I (Na+, NH4+, Ca2+ and Mg2+); (iv) mineral solution II (trace metals); (v) phosphate; and (vi) bicarbonate. Six other duplicate test culture sets were maintained with one of the above components omitted from the feed. Methane production was monitored over a test period of 189 days (11.3 hydraulic retention times). Omission of bicarbonate, mineral solution I and phosphate caused methane production to stop with the subsequent accumulation of phenol and p-cresol in the cultures. Methane production in cultures which did not receive the B vitamins or mineral solution II did not differ from that of the control culture. The failure of the bicarbonate deficient cultures to degrade the phenolics could not be attributed to a pH decrease and the results suggest that the phenolic-degrading bacteria require CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号