首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nb-Fe-B系纳米晶复合磁体的磁特性纳米晶复合磁体是指由20nm左右微细晶粒的软磁相与硬磁相组成的磁体。Nb-Fe-B系纳米复合磁体是软磁相t-Fe3B、Fe2B、α-Fe和硬磁相Nd2Fe14B组成,其磁特性在颇大程度上取决于软磁相和硬磁相的种类...  相似文献   

2.
烧结Nd磁体已广泛用于电脑、核磁共振诊断装置、马达、通讯音响机器等方面,这种磁体是以主相Nd2Fe14B的高磁晶各向异性为基的结晶组织。而新发展起来的纳米复合磁体,则是由硬磁相与软磁相所组成的微细双相组织,它利用了硬碰相的高磁晶各向异性与软磁相的高饱和磁化强度微细构造的两相交换相互作用,而发挥出高的磁特性。硬磁相常用Nd2Fe14B而软磁相为Fe或Fe3B,作为合金成分以Nd、Fe、B为主,为提高居里点而添加微量Co,为提高矫顽力而加入微量Nb、V和Mo等。纳米复合永磁的制造方法不同于烧结Nd磁…  相似文献   

3.
最初的稀土类硬磁材料是60年代开发的Sm-Co系磁体,后来又开发了Nd-Fe-B系及Sm-Fe-B系新磁体,使磁体的最大能积获得飞跃性提高.由于它价格高,所以并不能完全取代铁磁体,但随着工业制品小型化的需要,稀土类磁体已应用到各个领域. 1983年日本佐川等人发现了Nd、Fe、B三元化合物,其居里温度高,并开发出最大能积为290kJ/m3的Nd-Fe-B系烧结磁体.其主相为Nd2Fe14B化合物,钕和硼仅存在于c面和1/2c面,铁在其中以类似σ相构造存在,除钦外的稀土元素R可形成R2Fe14B化…  相似文献   

4.
纳米复合磁体由纳米级混合的软磁相与硬碰相构成,由于软磁相-碰相间的交换耦合而阻止软磁相的磁化反转,如果能形成理想的复合构造将有可能获得超越Nd-Fe-B磁体磁性能的纳米复合磁体。这种磁体的磁特性对于其微结构(软磁相和硬磁的晶粒粒径,结晶取向,体积比)的依赖关系很大,通常用急冷法等工艺难以系统地控制其微结构,然而薄膜法却能够通过变化膜厚和基板温度等制备条件来控制其微结构。根据这一观点,近年来已广泛研究了Nd-Fe-B/Fe系、SmCo/Fe系等多层膜纳米复合磁体。在这类多层膜系中,通过改变软磁层与…  相似文献   

5.
纳米晶Nd┐Fe┐B磁体的矫顽力和自旋再取向转变研究了用溶体快淬法制备的Nd-Fe-B纳米复合磁体的矫顽力和自旋再取向随温度的变化。快淬条带为三种有代表性成分的合金:(1)接近Nd2Fe14B计量成分的11at%~13at%Nd合金,其超细晶粒之间因...  相似文献   

6.
Nd2Fe14B/α—Fe纳米晶双相复合永磁合金   总被引:8,自引:1,他引:7  
张敏刚  郭东城 《金属学报》1999,35(7):777-780
采用快淬火及热处理工艺,通过复合添加Dy和Ga,制备了高磁性能的Nd2Fe14B/α-Fe纳米晶双相复合永磁合金,合金最佳磁性能为,Jf=1.161T(11.6kGs),Hci=580.50kA/m(7.30kOe)和(BH)max=162.7kJ/m^3(20.5MGs.Oe)。该合金成分为Nd7.5Dy1Fe85B4.5Ga2,其显微组织由晶粒尺寸约为32nm的硬磁相Nd2Fe14B和16nm  相似文献   

7.
纳米复合磁体磁化过程的计算机研究   总被引:3,自引:0,他引:3  
对Nd2Fe14B/α-Fe纳米复合磁体单个粉末颗粒的磁化过程进行了计算机模型居不同条件下得到三种磁滞回线,即:Stner-Wohlfarth型,细腰型和具有良好矩形度的磁滞回线。并且研究了约化剩磁,内禀矫顽力和最大磁能积随晶粒尺寸α和软磁相含量fm的变化。  相似文献   

8.
添加La和Cr的NdFeB纳米晶合金作为粘结磁体应用的纳米复合钕磁体,广泛地研究了两种类型材料,即α-Fe/Nd2Fe14B和Fe3B/Nd2Fe14B。已有的研究证明,为获得纳米晶结构和剩磁增长,在α-Fe/Nd2Fe14B复合体中添加Si、Al、...  相似文献   

9.
作为一种新型Nd-Fe-B磁体,低稀土Nd-Fe-B磁体具有硬磁相Nd2Fe14B与软磁相Fe3B微细混合的纳米晶组织,通过这两相的交换耦合作用而实现高矫顽力磁特性。但其Fe3B相属亚稳相不可能用烧结法来制造,目前只能采用超快冷凝法生产非晶态合金,再通过热处理来得到。当前冲击成形法可以说是非晶态合金粉末固化成形的最好方法,在利用冲击波成形时粉末进行激烈摇动而高密度化,其冲击压缩时间一般仅为10-6S左右,在如此短暂的一瞬间非晶合金不致于晶化,同时由于冲压而引起粉末表层变成熔融状态,但粉末内部温度…  相似文献   

10.
用旋淬法制备了Nd2Fe14B/α-Fe基复相纳米交换耦合磁体粉末样品.发现样品由于在室温下的结构弛豫导致磁性能的较大变化.在淬态Nd-Fe-B非晶相和Nd2Fe14B/α-Fe纳米晶共存的三相交换磁体中,其效果更为明显.而在淬态完全非晶态或晶态的单相或复相交换磁体中,结构弛豫对磁性能的影响较弱.淬态Nd10Fe83B6In磁体粉末经过在室温下置放1年时间后,内禀矫顽力Hc由刚出炉时的296kA/m增加至384kA/m,剩磁比mr从0.55增至0.62非晶相的存在为晶粒发展完备的晶界提供了可能.应力和缺陷集中的边界区域的结构弛豫和原子调整使得相邻接的相与相、晶粒与晶粒之间的结晶学相关性提高,交换耦合增强.同时完善的晶界也增强磁体的磁硬化.X射线衍射结果显示结构弛豫的最终结果使得衍射峰宽化,极有可能在晶界处形成了畸变的晶间相.而正是这种畸变的晶间相对磁性能的增强起了关键的作用.  相似文献   

11.
Nd2 Fe14 B/α Fe纳米复合磁体如果硬磁相具有理想的取向构造时 ,有可能获得超过Nd Fe B磁体的很高的磁特性 ,其最一般的制作方法便是熔体快淬法形成硬磁相晶轴方向紊乱分散的各向同性磁体。这种各向同性纳米复合磁体的磁特性 ,在剩磁密度 Br 与矫顽力HC 的关系方面很接近于理论估算值。因此 ,为了进一步提高磁特性 ,使纳米复合磁体的硬磁相取向是很必要的 ,为此对于制造工艺的选择很重要。在这方面薄膜制造工艺是颇有前途的 ,近年来已制备成功Nd Fe B/α Fe系、SmCo/α Fe系等硬磁相取向的纳米复合多层膜。但…  相似文献   

12.
由软磁相bcc Fe与硬磁相Nd2 Fe14 B组成的纳米复合磁体的磁特性 ,根据模拟计算的结果 ,在bcc Fe相的体积分率增加到 60 %和粒径细化到 10nm左右时 ,其 (BH) max 可超过 4 0 0kJ/m3。高浓度Fe的Fe (Zr ,Nb) (Nd ,Pr) B非晶合金 ,通过热处理获得的纳米复相组织 ,其晶粒粒径主要取决于热处理条件 ,因此 ,为了获得良好的硬磁特性 ,有必要实现热处理条件的最佳化。因此 ,日本东北大学金属材料研究所等单位的研究人员 ,研究了富铁的Fe Nb Nd B非晶合金经过最佳热处理后的微细结晶组织及磁特性。研…  相似文献   

13.
永磁体广泛用于各种电动机、检测仪表类、传感器、磁力器具以及医疗机器等方面。钕系Nd2FC14B金属间化合物的理论(BH)m为512kJ/m3(64MGOe),当前已能制造(HB)m最高达400kJ/m3的各向异性烧结磁体,是当前磁性能最优越的永磁体,其市场正在日益扩大。Nd-Fe-B粘结磁体当前达到批量生产水平的产品,其(BH)m最高只有96kJ/m3(12MGOe),仅为烧结磁体的1/4,只是因为它使用了非磁性树脂粘结剂(体积含量达60%~80%)的结果.作为粘结磁体虽然在磁力方面不如烧结磁体…  相似文献   

14.
纳米晶NdFeB永磁体用熔体快淬工艺制备了各向同性纳米晶交换耦合NdFeB永磁体,研究了成分、微结构对快淬的Fe14Nd2B/a-Fe复合磁体磁性的影响。所研究的复合磁体的成分从近乎单相的Fe14Nd2B开始,逐步增加-Fe相含量,直到40%(体积)...  相似文献   

15.
在Fe3B/Nd2Fe14B纳米复合磁体中,以Cr取代部分Fe会提高合金中Nd2Fe14B相的体积分数,导致矫顽力的提高.为阐明Cr对该类合金磁性的影响,研究了熔体快淬NdxFe82-xB18和NdxFe79-xCr3B18(X=3.5~5.5)合金晶化行为的差别。NdxFe82-xB18和NdxFe79-xCr3B18熔体快淬带由铜单辊法制备,辊速为20m/s,条带宽2mm、厚40um,样品经不同温度的等温退火。用X射线衍射仪鉴别条带的相组成,用振动样品磁强计测量磁性,用原子探针场离子显微镜研…  相似文献   

16.
至今已广泛研究了两个成分的Nd2 Fe14 B型纳米复合永磁Nd2 Fe14 B/Fe3B和Nd2 Fe14 B/α Fe ,这些复合磁体是由交换耦合的纳米尺寸大小的硬磁相与软磁相组成。它们可以由熔体快淬或机械合金化方法制得。通常熔体快淬非晶带通过晶化可以获得硬磁性能优良的磁  相似文献   

17.
添加元素Dy对Nd—Fe—B永磁合金性能的影响   总被引:6,自引:0,他引:6  
由于氢化制粉制备的NdFeB粉末制品烧结时磁体中的晶粒异常长大,使合金的矫顽力降低。通过在NdFeB合金中加入少量Dy2O3,能有效地抑制合金高温烧结时的晶粒长大,增加了各向异性很高的(Nd,Dy)2Fe14B相,从而使合金的矫顽力得到提高,当Dy的加入量超过(摩尔分数)4%时,Dy在富Nd相晶界中分布比在基体相Nd2Fe14B中高。  相似文献   

18.
系统研究了低Nd低B的Fe1-x-(Nd2Fe14B)x快淬合金的制备工艺和磁性能。通过优化热处理工艺和元素替换,控制α-Fe和Fe3B软磁相的析出和长大,获得较高的磁性能。该系列Nd3Fe86V2B4合金具有最佳性能.Br=9.7kGs,JHC=4.3kOe,(BH)max=11.4MGOe。  相似文献   

19.
本文通过磁分析和透射电子显微镜等手段研究了Nd0.15(Fe0.935-xGaxB0.065)(x=0,0.012,0.036,0.060)快淬带中Ga对磁性能及微观结构的影响。发现Ga可使材料的居里温度和矫顽力从x=0时的312℃和380kA/m分别提高到x=0.06时的342℃和1530kA/m。快淬带的微观结构由晶粒尺寸为70~100nm的等轴晶组成,并发现在热处理过程中,Ga有助于获得晶粒均匀的微观结构和有效地抑制晶粒长大。在热处理态的快淬带中,除了Nd2Fe14B基相外,还发现少量的Nd2Fe23B3、Nd8Fe27B24和Nd2O3相。  相似文献   

20.
用HDDR处理法生产的NdFeB各向异性磁粉制作的粘结磁体,较之传统NdFeB各向同性粘结磁体(MQ粘结体),磁特性高((BH)max约160kJ/m3)。但各向异性磁粉的耐热性差,其矫顽力的温度系数(aH)为-0.5~-0.6%/K,各向同性磁粉为-0.4%/K。为了改善各向异性NdFeB粘结磁体的耐热性,研究了利用含有挥发性成分的树脂作为粘结剂的效果,探讨了挥发性树脂的配合方法对于粘结磁体力学强度的影响。研究用的NdFeB各向异性磁粉是用HDDR处理法制得的Nd13。0Fe68.7Ci10.…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号