首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Meiotic cells monitor the status of the interhomolog recombination complex   总被引:5,自引:0,他引:5  
Cortical granule exocytosis is important for the block to polyspermy at fertilization in the eggs of most vertebrates and many invertebrates. Cortical granules are poised at the cell surface and exocytose in response to sperm stimulation. Following exocytosis, the cortical granule contents modify the extracellular environment of the egg, the major result of which is to block additional sperm binding. Here we show that proteins homologous to members of the SNARE hypothesis-a molecular model designed to explain the trafficking, docking, and exocytosis of vesicles in the secretory compartment-are present in eggs at the right time and place to be involved in the regulation of cortical granule exocytosis. Using polymerase chain reaction (PCR) screens we have found homologues of synaptobrevin/VAMP, syntaxin, synaptotagmin, and rab3. Antibodies generated to fusion proteins or to synthetic peptides encoded by the cloned cDNAs were used in an immunofluorescence assay to show that each of the cognate proteins are present in the cortex of the egg. A synaptobrevin/VAMP homologue appears to be specifically associated with the membrane of cortical granules before fertilization and, following cortical granule exocytosis, is incorporated into the plasma membrane of the zygote. A rab3 homologue is also associated with cortical granules specifically but, following fertilization, the protein reassociates with different, yet undefined, vesicles throughout the cytoplasm of the zygote. Homologues of synaptotagmin and syntaxin are also present at the egg cortex but, in contrast to rab3 and VAMP, appear to be associated with the plasma membrane. Following fertilization, syntaxin and tagmin remain associated with the plasma membrane and are more readily immunolabeled, presumably due to an increased accessibility of the antibodies to the target protein domains. We also show by immunoblotting experiments that the cognate proteins are of the sizes predicted for these homologues. These results suggest that at least some steps in the biology of cortical granules may be mediated by SNARE homologues, and this finding, along with the unique biology of cortical granules, should facilitate examination of specific events of the fertilization reaction and the mechanism of stimulus-dependent exocytosis.  相似文献   

2.
In sea urchin eggs, fertilisation is followed by a calcium wave, cortical granule exocytosis and fertilisation envelope elevation. Both the calcium wave and cortical granule exocytosis sweep across the egg in a wave initiated at the point of sperm entry. Using differential interference contrast (DIC) microscopy combined with laser scanning confocal microscopy, populations of cortical granules undergoing calcium-induced exocytosis were observed in living urchin eggs. Calcium imaging using the indicator Calcium Green-dextran was combined with an image subtraction technique for visual isolation of individual exocytotic events. Relative fluorescence levels of the calcium indicator during the fertilisation wave were compared with cortical fusion events. In localised regions of the egg, there is a 6s delay between the detection of calcium release and fusion of cortical granules. The rate of calcium accumulation was altered experimentally to ask whether this delay was necessary to achieve a threshold concentration of calcium to trigger fusion, or was a time-dependent activation of the cortical granule fusion apparatus after the 'triggering' event. Calcium release rate was attenuated by blocking inositol 1,4,5-triphospate (InsP3)-gated channels with heparin. Heparin extended the time necessary to achieve a minimum concentration of calcium at the sites of cortical granule exocytosis. The data are consistent with the conclusion that much of the delay observed normally is necessary to reach threshold concentration of calcium. Cortical granules then fuse with the plasma membrane. Further, once the minimum threshold calcium concentration is reached, cortical granule fusion with the plasma membrane occurs in a pattern suggesting that cortical granules are non-uniform in their calcium sensitivity threshold.  相似文献   

3.
Exocytosis of cortical granules in mouse eggs is required to produce the zona pellucida block to polyspermy. In this study, we examined the role of microfilaments and microtubules in the regulation of cortical granule movement toward the cortex during oocyte maturation and anchoring of cortical granules in the cortex. Fluorescently labeled cortical granules, microfilaments, and microtubules were visualized using laser-scanning confocal microscopy. It was observed that cortical granules migrate to the periphery of the oocyte during oocyte maturation. This movement is blocked by the treatment of oocytes with cytochalasin D, an inhibitor of microfilament polymerization, but not with nocodazole or colchicine, inhibitors of microtubule polymerization. Cortical granules, once anchored at the cortex, remained in the cortex following treatment of metaphase II-arrested eggs with each of these inhibitors; i.e., there was neither inward movement nor precocious exocytosis. Finally, the single cortical granule-free domain that normally becomes localized over the metaphase II spindle was not observed when the chromosomes become scattered following microtubule disruption with nocodazole or colchicine. In these instances a cortical granule-free domain was observed over each individual chromosome, suggesting that the chromosome or chromosome-associated material, and not the spindle, dictates the localization of the cortical granule-free domain.  相似文献   

4.
5.
There is accumulating evidence that small GTPases of the rab family regulate intracellular vesicle traffic along biosynthetic and endocytotic pathways in eukaryotic cells. It has been suggested that Rab3a, which is associated with synaptic vesicles in neurons and with secretory granules in adrenal chromaffin cells, might regulate exocytosis. We report here that overexpression in PC12 cells of Rab3a mutant proteins defective in either GTP hydrolysis or in guanine nucleotide binding inhibited exocytosis, as measured by a double indirect immunofluorescence assay. Moreover, injection of the purified mutant proteins into bovine adrenal chromaffin cells also inhibited exocytosis, as monitored by membrane capacitance measurements. Finally, the electrophysiological approach showed that bovine chromaffin cells which were intracellularly injected with antisense oligonucleotides targeted to the rab3a messenger exhibited an increasing potential to respond to repetitive stimulations. In contrast, control cells showed a phenomenon of desensitization. These results provide clear evidence that Rab3a is involved in regulated exocytosis and suggest that Rab3a is a regulatory factor that prevents exocytosis from occurring unless secretion is triggered. Furthermore, it is proposed that Rab3a is involved in adaptive processes such as response habituation.  相似文献   

6.
Synthetic peptides corresponding to the effector domain of the small molecular weight GTP-binding protein Rab3A are known to stimulate exocytosis in various secretory cells. In the present study, we report that Rab3A effector domain peptide (33-48) causes accumulation of inositol 1,4,5-trisphosphate (1,4,5-IP3) in permeabilized pancreatic acinar cells, hepatocytes, 3T3 fibroblasts, and SH-SY5Y neuroblastoma cells. A scrambled peptide of Rab3A had no effect showing specificity of the Rab3A peptide response. No effect was observed in intact cells indicating that the target of the peptide is located intracellularly. We conclude that Rab3 effector domain peptide-induced accumulation of 1,4,5-IP3 is a wide-spread phenomenon, suggesting regulation of phosphoinositide-specific phospholipase C by Rab3-like proteins.  相似文献   

7.
Pig oocytes were examined to test their ability to undergo cortical granule exocytosis upon penetration by spermatozoa during meiotic maturation. Immature or maturing oocytes (cultured in vitro for 0 h, 26 h and 46 h) were inseminated with ejaculated boar spermatozoa in vitro. Before and after insemination, oocytes were stained with peanut agglutinin labelled with fluorescein isothiocyanate and the cortical granule distributions were examined under the fluorescent microscope and the laser confocal microscope. Before insemination, all the oocytes at the germinal vesicle stage showed a uniform distribution of cortical granules throughout the cortical cytoplasm. The granules migrated centrifugally during maturation and were distributed just beneath the oolemma in the oocytes after germinal vesicle breakdown, forming a monolayer in metaphase I or metaphase II. Cortical granules were still present in all penetrated oocytes at the germinal vesicle stage 18 h after insemination; in contrast, 26% and 84% of the oocytes inseminated at the stages of germinal vesicle breakdown or at metaphase I and II, respectively, completely released their cortical granules. Nuclear activation rates of penetrated oocytes were 0%, 38% and 96% in oocytes cultured for 0 h, 26 h and 46 h, respectively. Of the nuclear-activated oocytes, 67% (oocytes cultured for 26 h) and 88% (oocytes cultured for 46 h) released cortical granules completely. Complete cortical granule exocytosis was not observed in nuclear-inactivated oocytes. Of the nuclear-activated oocytes, 67% (oocytes cultured for 26 h) and 80% (oocytes cultured for 46 h) of monospermic oocytes and 67% (oocytes cultured for 26 h) and 91% (oocytes cultured for 46 h) of polyspermic oocytes released cortical granules, and no statistical difference was observed between oocytes cultured for 26 h or 46 h, or between monospermic and polyspermic oocytes. The proportion of oocytes with cortical granule exocytosis increased as insemination time increased and was greatest 18 h after insemination in oocytes cultured for 26 h and 46 h; no obvious changes were observed when the insemination time was prolonged to 24 h. These results indicate that pig oocytes develop the ability to release cortical granules after penetration by spermatozoa following germinal vesicle breakdown, and that this ability is not fully developed until metaphase II. Cortical granule exocytosis is accompanied by nuclear activation, suggesting that both nuclear and cytoplasmic maturation are responsible for the cortical reaction. Polyspermy may be a result of a complete failure of cortical granule exocytosis in immature oocytes and delayed CG exocytosis in matured oocytes.  相似文献   

8.
In their review, Langley and Grant (1997) investigate the question whether mechanisms of exocytosis are neurotransmitter specific. There is now much evidence that the mechanisms governing the exocytosis of the two principal storage organelles--granules (large dense core vesicles) and electron-lucent vesicles--differ. But much less is known concerning potential differences in the release mechanisms of electron-lucent vesicles that store different types of fast neurotransmitters or of granules in different types of neurons. It is an open question whether there is a unifying control mechanism for the exocytosis of, for example, a peptide-containing granule of a glutamatergic neuron, a chromaffin granule, a noradrenergic granule or a granule from a neurosecretory neuron in the pituitary. The small electron-lucent synaptic vesicles of various kind apparently share common molecular components of regulated release. They carry the calcium sensor synaptotagmin, small GTP-binding proteins of the rab3 group or the v-SNARE synaptobrevin. Nevertheless, there may be differences in the regulatory mechanisms. This concerns the type of calcium channel involved or the absence of some of the presynaptic molecules such as rab3a, synapsin I or the t-SNAREs SNAP-25 or syntaxin from distinct types of neurons or sensory cells.  相似文献   

9.
Besides having a role in signal transduction, heterotrimeric G proteins may be involved in membrane trafficking events. In chromaffin cells, Go is associated with secretory organelles, and its activation inhibits the ATP-dependent priming of exocytosis. By using permeabilized cells, we previously described that the control exerted by the granule-bound Go on exocytosis may be related to effects on the cortical actin network through a sequence possibly involving Rho. To provide further insight into the function of Rho in exocytosis, we focus here on its intracellular localization in chromaffin cells. By immunoreplica analysis, immunoprecipitation, and confocal immunofluorescence, we found that RhoA is specifically associated with the membrane of secretory chromaffin granules. Parallel subcellular fractionation experiments revealed the occurrence of a mastoparan-stimulated phosphatidylinositol 4-kinase activity in purified chromaffin granule membranes. This stimulatory effect of mastoparan was mimicked by GAP-43, an activator of the granule-associated Go, and specifically inhibited by antibodies against Galphao. In addition, Clostridium botulinum C3 exoenzyme completely blocked the activation of phosphatidylinositol 4-kinase by mastoparan. We propose that the control exerted by Go on peripheral actin and exocytosis is related to the activation of a downstream RhoA-dependent phosphatidylinositol 4-kinase associated with the membrane of secretory granules.  相似文献   

10.
The heterotrimeric G-protein Gq/11 was identified on pancreatic acinar zymogen granules and its function in calcium-regulated exocytosis was examined. Western blotting showed alphaq/11, but not alphas or alphao, to be localized to the zymogen granule membrane along with G-protein beta-subunit; all three alpha subunits were present in a plasma membrane fraction and the alphaq/11 signal was 30-fold more enriched in the plasma membrane as compared with granule membrane. Neither CCK receptors nor alpha subunits of the sodium pump, both plasma membrane markers were present on granule membranes. Immunohistochemistry of pancreatic lobules showed that alphaq/11 localized to the zymogen granule-rich apical region of acinar cells together with a much stronger signal at the basolateral plasma membrane. When the substance-P-related peptide GPAnt-2a, an antagonist of Gq/11, was introduced into streptolysin-O permeabilized acini to bypass the plasma membrane, the amylase release induced by 10 microM free calcium was potentiated in a concentration-dependent manner. By contrast, another substance-P-related peptide, GPAnt-1, an antagonist of Go and Gi, showed no effect on calcium-induced amylase release from permeabilized acini. GPAnt-2a peptide also exerted an inhibitory effect on the total GTPase activity of the purified zymogen granules and a larger inhibitory effect on the GTPase activity of the Gq/11 protein immunopurified from zymogen granules. GPAnt-1, however, did not inhibit GTPase activity of either zymogen granules or immunopurified Gq/11. These results suggest that GPAnt-2a peptide augmented calcium-induced amylase release from permeabilized acini by inhibiting GTPase activity of the Gq/11 protein on zymogen granules. We conclude that Gq/11 protein on zymogen granules plays a tonic inhibitory role in calcium-regulated amylase secretion from pancreatic acini.  相似文献   

11.
At fertilization, the membrane potential of the egg of the lamprey, Lampetra japonica, shifted rapidly from its resting value of -12 to +36 mV and gradually returned to about the same resting level (fertilization potential). The amplitude of depolarization was influenced by the external Cl- concentration and by an anion channel blocker, DIDS, indicating that the positive shift of membrane potential resulted from Cl- efflux. A similar change in membrane potential (activation potential) was observed when the unfertilized egg was pricked with a fine needle or treated with A23187 to induce parthenogenetic activation. Pricking at the animal pole region (predetermined site for sperm entry) resulted in the occurrence of an immediate activation potential and the initiation of cortical granule exocytosis. A time lag between the pricking and the occurrence of the activation potential was observed when the egg was pricked at a distance from the animal pole. In this instance, the activation potential was produced immediately before the propagating cortical granule exocytosis initiated at the pricked site reached the animal pole region. Sperm-egg fusion was blocked in eggs voltage-clamped at +20 to +40 mV and inseminated, whereas it took place in eggs clamped at -60 to 0 mV. However, most eggs clamped at +20 to +40 mV did activate, indicating that the voltage dependence of egg activation differs from that of sperm-egg fusion. Although eggs voltage-clamped at negative membrane potentials permitted multiple sperm to fuse with the egg plasma membrane, the nucleus of the fused sperm did not necessarily enter the ooplasm. We conclude that: (1) A fast electrical block against polyspermy operates in this species and is effective for about 160 sec of the onset of the positive shift; (2) the opening of Cl- channels is responsible for the potential change; (3) the channels are largely localized in the animal pole region; (4) during voltage clamp at positive potentials, eggs can be activated without sperm-egg fusion; and (5) during voltage clamp at negative potentials, sperm-egg fusion occurs, but sperm entry into the egg cytoplasm does not always proceed.  相似文献   

12.
Cytolytic T cells use two mechanisms to kill virally infected cells, tumor cells, or other potentially autoreactive T cells in short-term in vitro assays. The perforin/granule exocytosis mechanism uses preformed cytolytic granules that are delivered to the target cell to induce apoptosis and eventual lysis. FasL/Fas (CD95 ligand/CD95)-mediated cytolysis requires de novo protein synthesis of FasL by the CTL and the presence of the death receptor Fas on the target cell to induce apoptosis. Using a CD8(+) CTL clone that kills via both the perforin/granule exocytosis and FasL/Fas mechanisms, and a clone that kills via the FasL/Fas mechanism only, we have examined the requirement of intra- and extracellular Ca2+ in TCR-triggered cytolytic effector function. These two clones, a panel of Ca2+ antagonists, and agonists were used to determine that a large biphasic increase in intracellular calcium concentration, characterized by release of Ca2+ from intracellular stores followed by a sustained influx of extracellular Ca2+, is required for perforin/granule exocytosis. Only the sustained influx of extracellular Ca2+ is required for FasL induction and killing. Thapsigargin, at low concentrations, induces this small but sustained increase in [Ca2+]i and selectively induces FasL/Fas-mediated cytolysis but not granule exocytosis. These results further define the role of Ca2+ in perforin and FasL/Fas killing and demonstrate that differential Ca2+ signaling can modulate T cell effector functions.  相似文献   

13.
Germinal vesicle (GV)-intact fully grown mouse oocytes do not undergo cortical granule (CG) exocytosis in response to A23187 treatment, whereas metaphase II (MII)-arrested eggs do. This differential response may reflect the development of the ability of the egg to undergo CG exocytosis, which is responsible for the biochemical modification of the glycoprotein ZP2 in the zona pellucida. Accordingly, we compared in these two stages the ability of 12-O-tetradecanoyl phorbol 13-acetate (TPA) or inositol 1,4,5-trisphosphate (IP3) to promote CG exocytosis and/or the ZP2 to ZP2f conversion; these agents are known to stimulate early events of mouse egg activation. TPA (10 ng/ml) treatment for 60 and 120 min resulted in a 25% and 52% CG loss in GV-intact oocytes and a 38% and 76% loss in MII eggs, respectively; fertilization resulted in a CG loss of approximately 70-80%. Although a similar extent of ZP2 to ZP2f conversion was observed in oocytes and eggs after a 120-min TPA treatment (approximately 70-80%), a greater extent of conversion was observed in oocytes after a 60-min treatment (80% for oocytes, 50% for eggs). Microinjection of IP3 (final concentration 1 microM) into MII eggs resulted in an extent of ZP2 conversion similar to that observed following fertilization, whereas little conversion occurred in GV-intact oocytes similarly injected. These results indicate that a protein kinase C sensitivity develops prior to meiotic maturation, whereas responsiveness to IP3 develops after maturation has resumed. We propose that the regulatory mechanism involving an IP3-mediated calcium release is deficient in GV-stage oocytes.  相似文献   

14.
15.
We have investigated the binding of the effector domains of myristoylated alanine-rich C kinase substrate (MARCKS) and of MARCKS-related protein (MRP) to lipid model membranes. For membrane systems we used lipid monolayers on a Langmuir trough and black lipid membranes (BLM). The binding of the peptides was detected by monitoring changes in the boundary potential of the lipid membranes. The vibrating plate technique (VPT) and the method of inner field compensation (IFC) were used for the monolayer and for the BLM, respectively. We could show that the effector domain of MARCKS binds to acidic lipid membranes mainly via electrostatic interactions and to zwitterionic lipid membranes via hydrophobic interactions. Isobaric measurements on lipid monolayers revealed that binding of both effector domains is accompanied by partial insertion of the peptides into the membrane. Adsorption and insertion of the peptides could be followed simultaneously by the VPT and by recording the increase in area of the lipid monolayer, respectively. No temporal delay could be observed between adsorption and insertion of the peptides, demonstrating that adsorption is the rate-limiting step and that insertion is faster than the time resolution of the experiments, i.e., a few seconds. Both the IFC and the VPT did not show any significant difference between the behaviors of the effector domains of MARCKS and MRP. With the IFC we show that calcium can regulate the translocation of the MARCKS effector peptide between the membrane and calmodulin (CaM) in the bulk. Our results indicate, that the IFC and VPT are suitable qualitatively, and to a certain extent quantitatively, as membrane binding assays.  相似文献   

16.
In the anterior pituitary of rat, gerbil, hamster and guinea pig, the presence and cellular distribution of the synaptic vesicle-associated proteins synaptotagmin I and rab3 were analyzed by immunoblotting and by immunocytochemical staining of serial semithin sections. Our results show that rab3 proteins are ubiquitously expressed in all endocrine cell types of both the anterior and intermediate lobe. In many cells, rab3 immunoreactivity was concentrated beneath the plasmalemma. This intracellular distribution coincided with the distribution of secretory granules, suggesting a possible association of rab3 proteins with the latter organelles. The staining patterns observed using two monoclonal rab3 antibodies with different isoform specificities are compatible with the recent suggestion that rab3B is the dominant rab3 isoform in anterior pituitary cells. However, we could demonstrate that also rab3A is present in endocrine adenohypophyseal cells, albeit at low levels. In contrast to rab3, synaptotagmin I immunoreactivity was only detected in a limited number of adenohypophyseal endocrine cells. Whereas the monoclonal synaptotagmin I antibody consistently failed to immunostain lactotrophs and endocrine cells of the intermediate lobe, other endocrine cell types displayed variable immunoreactivities towards this antibody. Although a low level of synaptotagmin I expression in the immunonegative cells cannot be excluded, the above observation may reflect a differential distribution of synaptotagmin isoforms in endocrine organs, as it has been described for the nervous system. Our study has established that endocrine cells of the anterior pituitary are endowed with proteins of the rab3 and synaptotagmin families which are generally thought to play important roles in the regulation of the trafficking and/or exocytosis of secretory organelles and, hence, probably fulfil similar functions in adenohypophyseal cells.  相似文献   

17.
Sec1-related proteins are essential for membrane fusion at distinct stages of the constitutive and regulated secretory pathways in eukaryotic cells. Studies of neuronal isoforms of the Sec1 protein family have yielded evidence for both positive and negative regulatory functions of these proteins in neurotransmitter release. Here, we have identified a squid neuronal homolog (s-Sec1) of Sec1 proteins and examined its function in neurotransmitter release at the squid giant synapse. Microinjection of s-Sec1 into the presynaptic terminal of the giant synapse inhibited evoked neurotransmitter release, but this effect was prevented by coinjecting the cytoplasmic domain of squid syntaxin (s-syntaxin), one of the binding partners of s-Sec1. A 24 amino acid peptide fragment of s-Sec1, which inhibited the binding of s-Sec1 to s-syntaxin in vitro, completely blocked release, suggesting an essential function of the s-Sec1/s-syntaxin interaction in transmitter release. Electron microscopy showed that injection of s-Sec1 did not change the spatial distribution of synaptic vesicles at presynaptic release sites ("active zones"), whereas the inhibitory peptide increased the number of docked vesicles. These distinct morphological effects lead us to conclude that Sec1 proteins function at different stages of synaptic vesicle exocytosis, and that an interaction of s-Sec1 with syntaxin-at a stage blocked by the peptide-is necessary for docked vesicles to fuse.  相似文献   

18.
CTL and NK cells share a common cytolytic mechanism that involves regulated exocytosis of lytic molecules stored within cytoplasmic granules. Here we describe the processing, subcellular localization, and function of a T and NK cell-specific granule protein that shares homology with small, lytic granule-associated molecules. The gene coding for this protein, 519, is expressed late after T cell activation. Antisera raised against a 519/glutathione-S-transferase fusion protein and a series of peptides derived from the 519 protein sequence permitted the identification of two small CTL protein products of 15 and 9 kDa that are exocytosed after stimulation through the TCR. The 9-kDa product is a processed form of 519 and differs from the 15-kDa product in both its amino and carboxyl terminus. While both 519 proteins are found in cytoplasmic granules, the 9-kDa form is also present in dense, highly cytolytic granules. Functional studies indicate that this protein is lytic against tumor cell targets. The cell type- and stage-specific expression pattern of 519 along with its subcellular localization are reminiscent of molecules that play a vital role in granule-mediated cytolysis by CTL and NK cells. Its lytic activity suggests the involvement of 519 in CTL effector function.  相似文献   

19.
Carboxypeptidase E (CPE) is a prohormone-processing enzyme and peripheral membrane protein of endocrine/neuroendocrine secretory granules. CPE has been shown to bind to an amino-terminal peptide of pro-opiomelanocortin (N-POMC) at pH 5.5 and hypothesized to be critically involved in the targeting of hormones such as POMC to the regulated secretory pathway [Cool, D. R., Normant, E., Shen, F., Chen, H. C., Pannell, L., Zhang, Y., and Loh, Y. P. (1997) Cell 88, 73-83]. To further explore the possibility that CPE serves to mediate the association of content proteins with the membrane during granule biogenesis, the binding of CPE to granule content proteins was investigated using an in vitro aggregation assay in which the selective precipitation of granule content proteins is induced by titration of the pH to <6.0. CPE was observed to co-aggregate efficiently with pituitary and chromaffin granule content proteins at concentrations well below those that promote its self-aggregation. In addition, CPE co-precipitated at pH 5.8 with purified prolactin and with insulin, which homophillically self-aggregate yet are structurally distinct from N-POMC. N-POMC when added to the assays did not inhibit the aggregation of CPE with prolactin or insulin, indicating that these interactions do not involve a binding site for N-POMC. The data show that CPE interacts at acidic pH with a variety of different content proteins, resembling in this regard other granule membrane proteins. The results support the idea that co-aggregation of abundant membrane proteins with content proteins is an important general mechanism for the sorting and retention of secretory granule proteins during granule maturation.  相似文献   

20.
Response to nicotine of adrenal chromaffin cells was studied in suckling and young adult male rats in vivo. When 5 mg/kg of nicotine was injected subcutaneously to 8-week-old rats, the content of adrenaline and noradrenaline in the chromaffin granule fraction decreased about by 36 and 45%, respectively, 2 min after the administration. In electron microscopy, the number of chromaffin granules in the perinuclear region of adrenaline-storing cells decreased markedly. The number of vacuoles, probably produced by membrane recycling resulting from exocytosis, increased significantly in adrenaline- and noradrenaline-storing cells. Omega-shaped profiles (exocytosis) were frequently observed both in adrenaline- and noradrenaline-storing cells. On the other hand, nicotine injection did not significantly alter the catecholamine content in the 21-day-old rat chromaffin granule fraction, although severe convulsion was evoked. In electron microscopy, the changes indicative of exocytosis mentioned above were scarcely observed. Cholinergic nerve fibers of mature appearance were observed in the adrenal medulla of 21-day-old rats. These results indicate that the responsiveness of the chromaffin cells to nicotine in 21-day-old rats differs from that in 8-week-old rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号