首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microelectrode and patch-clamp techniques were used in the isolated cortical collecting duct to study the effects of stimulating Na+-K+-ATPase by raising bath K+ (Fujii Y and Katz AI. Am J Physiol Renal Fluid Electrolyte Physiol 257: F595-F601, 1989 and Muto S, Asano Y, Seldin D, and Giebisch. Am J Physiol Renal Physiol 276: F143-F158, 1999) on the transepithelial (VT) and basolateral membrane (VB) voltages and basolateral K+ channel activity. Increasing bath K+ from 2.5 to 8.5 mM resulted in an initial hyperpolarization of both VT and VB followed by a delayed depolarization. The effects of raising bath K+ on VT and VB were attenuated by decreasing luminal Na+ from 146.8 to 14.0 mM and were abolished by removal of luminal Na+, whereas those were magnified in desoxycorticosterone acetate (DOCA)-treated rabbits. Increasing bath K+ also led to a significant reduction of the intracellular Na+ and Ca2+ concentrations. The transepithelial conductance (GT) or fractional apical membrane resistance (fRA) were unaltered during the initial hyperpolarization phase, whereas, in the late depolarization phase, there were an increase in GT and a decrease in fRA, both of which were attenuated in the presence of low luminal Na+ (14.0 mM). In tubules from DOCA-treated animals, bath Ba2+ not only caused a significantly larger initial hyperpolarization of VT and VB but also blunted the late depolarization by high bath K+. Nomega-nitro-l-arginine methyl ester (l-NAME) partially mimicked the effect of Ba2+ and decreased the amplitude of the late depolarization. Patch-clamp experiments showed that raising bath K+ from 2.5 to 8.5 mM resulted in an increased activity of the basolateral K+ channel, which was absent in the presence of l-NAME. We conclude that stimulation of Na+-K+-ATPase increases the basolateral K+ conductance and that this effect involves suppression of nitric oxide-dependent inhibition of K+ channels.  相似文献   

2.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear.  相似文献   

3.
Ouabain, a cardiac glycoside, binds to the alpha-subunits of Na+, K(+)-ATPase and inhibits Na+ pump activity. It has been proposed that endogenous ouabain, by inhibiting vascular Na+, K(+)-ATPase, can increase vascular resistance and thus may contribute to hypertension. One of the consequences of inhibition of the membrane Na+ pump is enhanced responsiveness of vascular smooth muscle to vasopressor substances. The purpose of the present study was to determine whether ouabain can enhance the responsiveness of the vasculature in hypertension. In the present study 100 microM ouabain enhanced the contractile response elicited by phenylephrine in isolated, perfused tail arteries from spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. The enhanced contractile response was more pronounced in the arteries of the SHR. We demonstrated that this concentration of ouabain inhibits the Na+ pump activity, measured as ouabain-sensitive 86Rb uptake, by about 65%, in isolated tail arteries. We conclude that ouabain can sensitize the vascular smooth muscle to the effects of vasopressor substances and this effect is more pronounced in genetically hypertensive rats. Endogenous ouabain may contribute to the pathophysiology of hypertension by enhancing vascular tone.  相似文献   

4.
Pancreatic duct epithelial cells (PDECs) mediate the pancreatic secretion of fluid and electrolytes. Membrane K+ channels on these cells regulate intracellular K+ concentration; in combination with the Na+/H+ antiport and Na+,K+ adenosine triphosphatase (ATPase), they may also mediate serosal H+ secretion, balancing luminal HCO3- secretion. We describe the K+ conductances on well-differentiated and functional nontransformed cultured dog PDECs. Through 86Rb+ efflux studies, we demonstrated Ca(2+)-activated K+ channels that were stimulated by A23187, thapsigargin, and 1-ethyl-2-benzimidazolinone, but not forskolin. These conductances also were localized on the basolateral membrane because 86Rb+ efflux was directed toward the serosal compartment. Of the K+ channel blockers, BaCl2, charybdotoxin, clotrimazole, and quinidine, but not 4-aminopyridine, apamin, tetraethylammonium, or iberiotoxin, inhibited 86Rb+ efflux. This efflux was not inhibited by amiloride, ouabain, and bumetanide, inhibitors of the Na+/H+ antiport, the Na+,K(+)-ATPase pump, and the Na+,K+,2Cl- cotransporter, respectively. When apically permeabilized PDEC monolayers were mounted in Ussing chambers with a luminal-to-serosal K+ gradient, A23187 and 1-ethyl-2-benzimidazolinone stimulated a charybdotoxin-sensitive short-circuit current (Isc) increase. Characterization of K+ channels on these cultured PDECs, along with previous identification of Cl- channels (1), further supports the importance of these cells as models for pancreatic duct secretion.  相似文献   

5.
Using an in vitro cell system and Cs+ NMR techniques we were able to show that porcine aortic endothelial cells (PAEC) reduce their Na(+)-K(+)-ATPase activity upon an increase in intracellular cAMP. Reduction in the pump rate was due to phosphorylation of the alpha-subunit of the ATPase as shown by immunoprecipitation. Apart from a pump inhibiton using 8-Br-cAMP and IBMX, we were also able to show that changes in the Na(+)-K(+)-ATPase activity could be mediated by the adenosine-A2 and prostaglandin receptor agonists 5'-N-Ethylcarboxamidoadenosine and Iloprost, respectively. Parallel to a decrease in pump activity we also observed a decrease in intracellular Cs+, indicating opening of K+ channels.  相似文献   

6.
In Na(+)- and K(+)-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardiac glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+,K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K(+)-free medium the Na+,K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na(+)-efflux mode is excluded.  相似文献   

7.
8.
The Na+,K(+)-ATPase plays a key role in the regulation of ion fluxes and membrane repolarization in the CNS. We have studied glucocorticoid effects on biosynthesis of the Na+,K(+)-ATPase and on ouabain binding in the ventral horn of the spinal cord using intact rats, adrenalectomized (ADX) rats, and ADX rats receiving dexamethasone (ADX+DEX) during 4 days. Cryostat sections from spinal cords were incubated with a 35S-oligonucleotide coding for the alpha 3-subunit or a 3H-cDNA coding for the beta 1-subunit of the Na+,K(+)-ATPase using in situ hybridization techniques. In ventral horn motoneurons, grain density per cell and grain density per area of soma for both probes were slightly reduced in ADX rats but significantly increased in the ADX+DEX group, using ANOVA and the Bonferroni's test. Statistical analysis of frequency histograms of neuronal densities further indicated a significant shift to the right for intact rats compared with ADX rats for both probes. Concomitantly, [3H]ouabain binding to membrane preparations from ventral horns was reduced in ADX rats and restored to normal by DEX administration. No effect of adrenalectomy or DEX treatment was obtained in the dorsal horn. In conclusion, glucocorticoids positively modulate the mRNA for the alpha 3-subunit and the beta 1-subunit of the Na+,K(+)-ATPase and recover ouabain binding to normal values. The increments of the synthesis and activity of an enzyme affecting membrane repolarization and synaptic neurotransmission are consistent with the alleged stimulatory effect of glucocorticoids on spinal cord function.  相似文献   

9.
H+, K(+)-ATPase is a proton pump responsible for gastric acid secretion. It actively transport proton and K+ coupled with the hydrolysis of ATP, resulting in the formulation of a 10(6) fold proton gradient across the plasma membrane of parietal cells. The pump belongs to a family of P-type ATPases which include the Na+ pump (Na+, K(+)-ATPase) and the Ca2+ pump (Ca(2+)-ATPase). This review focuses on the structure-function relationship of this proton pump by using functional antibodies, specific inhibitor(s), a fluorescent reagent and site-directed mutants. First we prepared monoclonal antibodies which modified the functions of the H+, K(+)-ATPase . One of the antibodies, HK2032 inhibited the H+, K(+)-ATPase activity and the chloride conductance in gastric vesicles opened by S-S cross-linking, suggesting that the chloride pathway is in the H+, K(+)-ATPase molecule, and that the H+, K(+)-ATPase is a multi-functional molecule. Other antibody, HK4001 inhibited the H+, K(+)-ATPase activity by inhibiting its phosphorylation step. By using this antibody we found an H+, K(+)-ATPase isoform in the rabbit distal colon. Second we found that scopadulcic acid B, a main ingredient of Paraguayan traditional herb, is an inhibitor specific for the H+, K(+)-ATPase. This compound inhibited the H+, K(+)-ATPase activity by stabilizing the K(+)-form of the enzyme. Third we studied the conformational changes of the H+, K(+)-ATPase by observing the fluorescence of FITC-labeled enzyme. H+, K(+)-ATPase did not utilize acetylphosphate instead the ATP as an energy source of active transport, suggesting that the energy transduction system is not common among P-type ATPases. Finally we constructed a functional expression system of the H+, K(+)-ATPase in human kidney cells. By using this functional expression system in combination with site-directed mutagenesis, we studied the significance of amino acid residues in the catalytic centers (a phosphorylation site and an ATP binding site) and the putative cation binding sites. We newly found the sites determining the affinity for cations.  相似文献   

10.
The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 +/- 0.15 and 21.5 +/- 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-D-Trp-D-Asp-Pro-D-Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K(+)-ATPase) and bumetanide (inhibitor of Na(+)-K(+)-Cl- cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport. ET-1- but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport activity that is not mediated by PKC.  相似文献   

11.
Toads of the genus Bufo are highly resistant to the toxic effects of digitalis glycosides, and the Na+,K(+)-ATPase of all toad tissues studied to date has been relatively insensitive to inhibition by digitalis and related compounds. In studies of brain microsomal preparations from two toad species, Bufo marinus and Bufo viridis, inhibition of ATPase activity and displacement of [3H]ouabain from Na+,K(+)-ATPase occurred over broad ranges of ouabain or bufalin concentrations, consistent with the possibility that more than one Na+,K(+)-ATPase isoform may be present in toad brain. The data could be fitted to one- or two-site models, both of which were consistent with the presence of Na+,K(+)-ATPase activity with high sensitivity to ouabain and bufalin. Ki (concentration capable of producing 50% inhibition of activity) values for ouabain in the one-site model were in the 0.2 to 3.7 microM range, whereas Ki1 values in the two-site model ranged from 0.085 to 0.85 microM, indicating that brain ATPase was at least three orders of magnitude more sensitive to ouabain than B. marinus bladder ATPase (Ki = 5940 microM). Ouabain was also an effective inhibitor of 86Rb+ uptake in B. marinus brain tissue slices (Ki = 3.1 microM in the one-site model; Ki1 = 0.03 microM in the two-site model). However, the relative contribution of the high ouabain-sensitivity site to the total activity was 17% in the transport assay as compared with 63% in the Na+,K(+)-ATPase enzymatic assay. We conclude that a highly ouabain-sensitive Na+,K(+)-ATPase activity is present and functional in toad brain but that its function may be partially inhibited in vivo.  相似文献   

12.
Contribution of outward currents to spike-frequency adaptation in hypoglossal motoneurons of the rat. J. Neurophysiol. 78: 2246-2253, 1997. Spike-frequency adaptation has been attributed to the actions of several different membrane currents. In this study, we assess the contributions of two of these currents: the net outward current generated by the electrogenic Na+-K+ pump and the outward current that flows through Ca2+-activated K+ channels. In recordings made from hypoglossal motoneurons in slices of rat brain stem, we found that bath application of a 4-20 microM ouabain solution produced a partial block of Na+-K+ pump activity as evidenced by a marked reduction in the postdischarge hyperpolarization that follows a period of sustained discharge. However, we observed no significant change in either the initial, early, or late phases of spike-frequency adaptation in the presence of ouabain. Adaptation also has been related to increases in the duration and magnitude of the medium-duration afterhyperpolarization (mAHP) mediated by Ca2+-activated K+ channels. When we replaced the 2 mM Ca2+ in the bathing solution with Mn2+, there was a significant decrease in the amplitude of the mAHP after a spike. The decrease in mAHP amplitude resulted in a decrease in the magnitude of the initial phase of spike-frequency adaptation as has been reported previously by others. However, quite unexpectedly we also found that reducing the mAHP resulted in a dramatic increase in the magnitude of both the early and late phases of adaptation. These changes could be reversed by restoring the normal Ca2+ concentration in the bath. Our results with ouabain indicate that the Na+-K+ pump plays little, if any, role in the three phases of adaptation in rat hypoglossal motoneurons. Our results with Ca2+ channel blockade support the hypothesis that initial adaptation is, in part, controlled by conductances underlying the mAHP. However, our failure to eliminate initial adaptation completely by blocking Ca2+ channels suggests that other membrane mechanisms also contribute. Finally, the increase in both the early and late phases of adaptation in the presence of Mn2+ block of Ca2+ channels lends further support to the hypothesis that the initial and later (i.e., early and late) phases of spike-frequency adaptation are mediated by different cellular mechanisms.  相似文献   

13.
It has long been accepted that marginal cells of stria vascularis are involved in the generation of the endocochlear potential and the secretion of K+. The present study was designed to provide evidence for this hypothesis and for a cell model proposed to explain K+ secretion and the generation of the endocochlear potential. Stria vascularis from the cochlea of the gerbil was isolated and mounted into a micro-Ussing chamber such that the apical and basolateral membrane of marginal cells could be perfused independently. In this preparation, the transepithelial voltage (Vt) and resistance (Rt) were measured across marginal cells and the resulting equivalent short circuit current (Isc) was calculated (Isc = Vt/Rt). Further, K+ secretion (JK+,probe) was measured with a K(+)-selective vibrating probe in the vicinity of the apical membrane. In the absence of extrinsic chemical driving forces, when both sides of the marginal cell epithelium were bathed with a perilymph-like solution, Vt was 8 mV (apical side positive), Rt was 10 ohm-cm2 and Isc was 850 microA/cm2 (N = 27). JK+,probe was outwardly directed from the apical membrane and reversibly inhibited by basolateral bumetanide, a blocker of the Na+/Cl-/K+ cotransporter. On the basolateral but not apical side, oubain and bumetanide each caused a decline of Vt and an increase of Rt suggesting the presence of the Na,K-ATPase and the Na+/Cl-/K+ cotransporter in the basolateral membrane. The responses to [Cl-] steps demonstrated a significant Cl- conductance in the basolateral membrane and a small Cl- conductance in the paracellular pathway or the apical membrane. The responses to [Na+] steps demonstrated no significant Na+ conductance in the basolateral membrane and a small Na+ or nonselective cation conductance in the apical membrane or paracellular pathway. The responses to [K+] steps demonstrated a large K+ conductance in the apical membrane. Apical application of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and basolateral elevation of K+ caused an increase in Vt and a decrease in Rt consistent with stimulation of the apical K+ conductance. Similar observations have been made in vestibular dark cells, which suggest that strial marginal cells and vestibular dark cells are homologous and transport ions by the same pathways. Taken together, these observations are incompatible with a model for the generation of the endocochlear potential which ascribes the entire potential to the strial marginal cells [Offner et al. (1987) Hear. Res. 29, 117-124].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
PURPOSE: To examine the relationship between the activity of the sodium pump of the corneal endothelium and corneal thickness. It was postulated that because inhibition pressure of the stroma decreases as thickness increases, a partially inhibited sodium pump would result in a new steady-state thickness of the cornea when reduced rates of fluid influx and efflux were equal. Measurements of physiologic behavior and biochemical activity were to be made in the same tissue and thus establish the relationship directly. METHODS: Rabbit corneas were superfused with a bicarbonate Ringer solution containing different concentrations of ouabain. Exposure to ouabain was either continuous for 4 hours or for an initial 10 minutes followed by ouabain-free superfusion. Thickness was measured, and, after superfusion, endothelium was removed from the corneas, sonicated, and assayed for Na(+)-K+ adenosine triphosphatase (ATPase) activity without further addition of ouabain to the assay medium. Thickness was also measured during superfusion with suboptimal concentrations of Na+ or HCO3- and with brefeldin A, an inhibitor of protein trafficking. RESULTS: Continuous exposure to ouabain caused corneas to swell, but no new steady-state thickness was reached. At low concentrations, swelling rates increased with time, as did the extent of inhibition of the Na(+)-K+ ATPase. With only a 10-minute exposure to ouabain, swelling rates with 10(-4) M to 10(-5) M decreased with the duration of ouabain-free superfusion. Similar swelling curves were obtained by reductions in Na+ or HCO3- concentrations in the superfusion medium, indicating that partial inhibition of the endothelial fluid transport processes, whether via the Na(+)-K+ ATPase or by suboptimal ionic conditions, led toward a new equilibrium thickness of the cornea. However, when superfusion was continued for more than 4 hours, the corneas exposed for 10 minutes to 3 x 10(-5) M or lower-concentration ouabain showed increasing Na(+)-K+ ATPase activity and began to thin, indicating a recovery of fluid transport capability. This recovery was blocked by addition of brefeldin A during the ouabain-free superfusion. CONCLUSIONS: Inhibition of Na(+)-K+ ATPase by low concentrations of ouabain increases with time. Temporary exposure to ouabain causes swelling at rates that decline with time as ouabain dissociates from enzyme sites. This dissociation, together with the turnover of Na(+)-K+ ATPase in the plasma membrane, can lead to recovery of normal thickness in ouabain-exposed corneas. Twenty percent of Na(+)-K+ ATPase in the endothelium is estimated to be intracellular, and about 20% of the activity can be inhibited without inducing swelling.  相似文献   

15.
1. Na+,K(+)-ATPase is the membrane enzyme catalysing the active transport of Na+ and K+ across the plasma membrane of animal cells. A reduced activity of Na+,K(+)-ATPase has been described in gestational hypertension in a variety of cell types, in agreement with the hypothesis that gestational hypertension can induce membrane transport modifications similar to those reported for essential hypertension. The causes of the reduced Na+,K(+)-ATPase activity are still debated. 2. The aim of the present work was to investigate the molecular mechanism of the reduced enzymic activity in gestational hypertension using as a model Na+,K(+)-ATPase purified from human placenta. Na+,K(+)-ATPase obtained from term placentas of eight healthy pregnant women and eight age-matched women with gestational hypertension was purified as previously described. 3. We observed in gestational hypertension: (i) a significant increase in the activation energies above transition temperature; (ii) a significant decrease in the fluorescence polarization of 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (i.e. increased fluidity) and an increase in the mean lifetime (modified hydrophobicity); (iii) a lower Kq, suggesting an enzymic structural modification; and (iv) an increased mean lifetime and rotational relaxation time of pyrene isothiocyanate, indicating a modified ATP binding site.  相似文献   

16.
The present study describes the effect of methyl isocyanate (MIC) on rabbit cardiac microsomal Na+, K(+)-ATPase. Addition of MIC in vitro resulted in dose-dependent inhibition of Na+, K(+)-ATPase, Mg(2+)-ATPase and K(+)-activated p-nitrophenyl phosphatase (K(+)-PNPPase). Activation of Na+, K(+)-ATPase by ATP in the presence of MIC showed a decrease in Vmax with no change in Km. Similarly, activation of K+ PNPPase by PNPP in the presence of MIC showed a decrease in Vmax with no change in Km. The circular dichroism spectral studies revealed that MIC interaction with Na+, K(+)-ATPase led to a conformation of the protein wherein the substrates Na+ and K+ were no longer able to bind at the Na(+)- and K(+)-activation sites. The data suggest that the inhibition of Na+, K(+)-ATPase was non-competitive and occurred by interference with the dephosphorylation of the enzyme-phosphoryl complex.  相似文献   

17.
Na+,K+-ATPase activity of rat brain synaptosomal membranes was evaluated in the presence of an inhibitory fraction II-E (termed endobain E), isolated by gel filtration and anionic exchange HPLC of a rat brain soluble fraction. We studied endobain E aging, analyzed its inhibitory potency in the absence or presence of ouabain as well as its ability to block high affinity [3H]ouabain binding to cerebral cortex membranes. Similar loss of endobain E activity was observed when samples were stored either dried or in solution. Endobain E fraction inhibited synaptosomal membrane Na+,K+-ATPase activity in a concentration-dependent manner and the slope of the corresponding curve strongly resembled that of ouabain. Assays performed in the presence of endobain E and ouabain indicated that the inhibitory effect was additive or less than additive, depending on their respective concentrations during preincubation and/or incubation. High affinity [3H]ouabain binding to cerebral cortex membranes proved concentration-dependent from 0.10 to 0.50 mg protein per ml; binding inhibition by endobain E was independent of protein concentration within the above range. [3H]ouabain binding inhibition by endobain E was concentration-dependent over a 10-fold range, an effect similar to that found for Na+,K+-ATPase inhibition. The extent of endobain E effect on Na+,K+-ATPase inhibition was much higher (90-100%) than that on [3H]ouabain binding blockade (50%). Findings suggest some type of interaction between endobain E and ouabain inhibitory mechanisms and favour the view that the former behaves as an endogenous ouabain.  相似文献   

18.
BACKGROUND: Lactate production after hemorrhagic shock may be produced by aerobic glycolysis, which has been linked to activity of the Na+/K+ pump in smooth muscle and other tissues. We tested whether increased muscle Na+/K+ pump activity after shock was linked to increased lactate production. METHODS: Male Sprague-Dawley rats were subjected to 1 or 2 hours of hemorrhagic shock and then resuscitated with shed blood and normal saline. After 24 hours, pairs of extensor digitorum longus muscles were preincubated for 30 minutes in Krebs buffer (95:5, O2:CO2) with 10 mmol/L glucose. One muscle served as a control and was incubated in buffer alone; the other was incubated in buffer with 1 mmol/L ouabain, an inhibitor of the Na+, K+-ATPase. Lactate, ADP, ATP, glycogen, and creatinine-phosphate were determined. RESULTS: Under these well-oxygenated conditions, muscles from shocked rats produced about twice as much lactate as sham muscles. Inhibition of the Na+/K+ pump by ouabain significantly reduced lactate production. CONCLUSIONS: Hypoxia is unlikely to account for increased muscle lactate production after resuscitated hemorrhagic shock, because high lactate production persists under well-oxygenated incubation conditions. Inhibition of shock-induced lactate production by ouabain indicates energetic coupling of glycolysis to the Na+, K+-ATPase.  相似文献   

19.
In the pancreatic beta-cell, glucose-induced membrane depolarization promotes opening of voltage-gated L-type Ca2+ channels, an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i), and exocytosis of insulin. Inhibition of Na+,K+-ATPase activity by ouabain leads to beta-cell membrane depolarization and Ca2+ influx. Because glucose-induced beta-cell membrane depolarization cannot be attributed solely to closure of ATP-regulated K+ channels, we investigated whether glucose regulates other transport proteins, such as the Na+,K+-ATPase. Glucose inhibited Na+,K+-ATPase activity in single pancreatic islets and intact beta-cells. This effect was reversible and required glucose metabolism. The inhibitory action of glucose was blocked by pretreatment of the islets with a selective inhibitor of a Ca2+-independent phospholipase A2. Arachidonic acid, the hydrolytic product of this phospholipase A2, also inhibited Na+, K+-ATPase activity. This effect, like that of glucose, was blocked by nordihydroguaiaretic acid, a selective inhibitor of the lipooxygenase metabolic pathway, but not by inhibitors of the cyclooxygenase or cytochrome P450-monooxygenase pathways. The lipooxygenase product 12(S)-HETE (12-S-hydroxyeicosatetranoic acid) inhibited Na+,K+-ATPase activity, and this effect, as well as that of glucose, was blocked by bisindolylmaleimide, a specific protein kinase C inhibitor. Moreover, glucose increased the state of alpha-subunit phosphorylation by a protein kinase C-dependent process. These results demonstrate that glucose inhibits Na+, K+-ATPase activity in beta-cells by activating a distinct intracellular signaling network. Inhibition of Na+,K+-ATPase activity may thus be part of the mechanisms whereby glucose promotes membrane depolarization, an increase in [Ca2+]i, and thereby insulin secretion in the pancreatic beta-cell.  相似文献   

20.
The present investigation was designed to determine whether atrial natriuretic peptides consisting of amino acids 1-30 (i.e. long-acting natriuretic peptide), 31-67 (vessel dilator), 79-98 (kaliuretic peptide), and 99-126 [atrial natriuretic factor (ANF)] of the 126 amino acid ANF prohormone inhibit sodium-potassium-ATPase as part of their mechanism(s) of action for producing a natriuresis and/or kaliuresis. Kaliuretic peptide, long-acting natriuretic peptide, vessel dilator and ANF at their 10(-11) M concentrations inhibited Na(+)-K(+)-ATPase 39.5%, 27.8%, 19.2%, and 4% respectively, in bovine renal medulla, whereas their inhibition in renal cortical membranes was 37.5%, 27.5%, 20%, and 0%, respectively. Ouabain (0.5 mM) inhibited kidney medullary Na(+)-K(+)-ATPase 45% and in the cortex, 38%. There was no additive effect of any of these peptides with ouabain suggesting that they are interacting with the same site on the Na(+)-K(+)-ATPase as ouabain. To help elucidate the mechanism of these peptides' interaction with Na(+)-K(+)-ATPase, naproxen (0.5 mM), an inhibitor of prostaglandin synthesis, and direct measurement of prostaglandin E2 by RIA were used. Naproxen completely blocked the inhibition of Na(+)-K(+)-ATPase by kaliuretic peptide, long-acting natriuretic peptide, and vessel dilator suggesting that their inhibition of Na(+)-K(+)-ATPase in both the kidney medulla and cortex are mediated by prostaglandins. Direct measurement of prostaglandin E2 revealed that kaliuretic peptide > long-acting natriuretic peptide > vessel dilator increased prostaglandin E2 synthesis, whereas ANF did not have any effect. Of interest, angiotensin II and ouabain inhibition of Na(+)-K(+)-ATPase were also completely blocked by naproxen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号