首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To take appropriate measures to minimize agricultural herbicide inputs into surface waters, detailed knowledge is required about all the factors that control the losses of a given compound from point sources (i.e., farmyards) as well as from the diffuse sources (i.e., the fields) within a given catchment. In this and in a companion paper, we present the results of a comprehensive field study, in which the temporal and spatial variability of the losses of three herbicides (atrazine, dimethenamid, and metolachlor) into the surface waters within a small catchment (2.1 km2) were investigated on different scales (i.e., field scale to whole catchment) after a controlled application of the compounds. In this paper, we discuss the loss dynamics of the three herbicides (and some of their metabolites) from the whole catchment over a period of 67 d after application. An identical mixture of the three herbicides was applied on 13 cornfields within 12 h, allowing for a comparison of their losses under identical meteorological conditions. Thanks to a high temporal sampling resolution, it was possible to distinguish between losses from a farmyard and losses from the fields. Farmyard losses contributed less than 20% to the total loads but caused the highest concentrations. The major herbicide losses from the agricultural fields occurred during the first two rain events after application that led to significant surface runoff and preferential flow into tile drains. In the soils of all fields, dimethenamid declined somewhat faster than atrazine and metolachlor, whereas atrazine was mobilized most effectively to runoff water. Relative losses of the three compounds did not vary by more than a factor of 3 (0.82, 0.27, and 0.41% of the mass applied for atrazine, dimethenamid, and metolachlor, respectively). Highest peak concentrations at the outlet of the catchment were found for atrazine (i.e., approximately 8 microg L(-1) for a short period (<2 h) due to point source losses and between 1 and 3.5 microg L(-1) during more than 24 h due to diffuse losses).  相似文献   

2.
The photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides was carried out in aqueous TiO2 suspensions under simulated solar light. The tested herbicides from the s-triazines group were atrazine, propazine, cyanazine, prometryne, and irgarol. The tested insecticides from the organophosphorus group were ethyl parathion, methyl parathion, ethyl bromophos, methyl bromophos, and diclofenthion. Degradation kinetics followed first-order reaction and has been monitored through gas chromatography. The degradation was fast with half-lives varying from 10.2 to 38.3 min depending on the nature and the structure of compounds. The generated transformation products (TPs) were formed via oxidation, dealkylation, and dechlorination for s-triazines and via oxidation and photohydrolysis for organophosphates. The TPs of irgarol, bromophos, and dichlofenthion were identified using solid-phase extraction (SDB-disks) and GC-MS techniques, and possible degradation routes were proposed showing similar degradation pathways as for other triazines and organophosporus pesticides. This work points out to the necessity of extended knowledge of the successive steps in a solar-assisted detoxification process.  相似文献   

3.
Herbicide contamination of streams has been well documented, but little is currently known about the specific factors affecting watershed vulnerability to herbicide transport. The primary objectives of this study were (1) to document herbicide occurrence and transport from watersheds in the northern Missouri/southern Iowa region; (2) to quantify watershed vulnerability to herbicide transport and relate vulnerability to soil properties; and (3) to compute the contribution of this region to the herbicide load of the Missouri and Mississippi Rivers. Grab samples were collected under baseflow and runoff conditions at 21 hydrologic monitoring stations between April 15 and July 15 from 1996 to 1999. Samples were analyzed for commonly used soil-applied herbicides (atrazine, cyanazine, acetochlor, alachlor, metolachlor, and metribuzin) and four triazine metabolites (deisopropylatrazine, deethylatrazine, hydroxyatrazine, and cyanazine amide). Estimates of herbicide load and relative losses were computed for each watershed. Median parent herbicide losses, as a percentage of applied, ranged from 0.33 to 3.9%; loss rates that were considerably higher than other areas of the United States. Watershed vulnerability to herbicide transport, measured as herbicide load per treated area, showed that the runoff potential of soils was a critical factor affecting herbicide transport. Herbicide transport from these watersheds contributed a disproportionately high amount of the herbicide load to both the Missouri and Mississippi Rivers. Based on these results, this region of the Corn Belt is highly vulnerable to transport of herbicides from fields to streams, and it should be targeted for implementation of management practices designed to reduce herbicide losses in surface runoff.  相似文献   

4.
Atrazine and two of its metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), are frequently detected in surface runoff. Although their health and environmental effects may be similar to that of atrazine and ratios of their concentrations are useful in delineating sources of contamination, there have been few long-term studies of the factors affecting their losses in runoff. Therefore, losses of atrazine, DEA, and DIA were monitored for six years in runoff from seven small (0.45-0.79 ha) watersheds under three tillage practices. Weather year and the timing of runoff-producing rainfall had a greater effect on atrazine, DEA, and DIA concentrations and losses than did tillage practice. DEA was the most frequently detected metabolite with an average concentration in the year of atrazine application, of 2.5 microg L(-1) compared to 0.7 microg L(-1) for DIA. Atrazine exceeded its 3 /g L(-1) maximum contaminant level (MCL) up to 100 days after application. DEA and DIA exceeded the atrazine MCL up to 50 days after atrazine application; thus, failure to monitor their presence may result in underestimation of the environmental impact of atrazine usage. The molar concentration ratio of DEA to atrazine (DAR) was affected by tillage treatment, weather year, and possibly soil type. These factors may need to be taken into account when DAR is used as an index of atrazine movement. The ratio of DIA to DEA (D2R) was fairly constant and should be useful in determining the parent compounds contributing DIA to surface waters.  相似文献   

5.
Several pesticides have been hypothesized to act as endocrine-disrupting compounds, exhibiting hormonal activity and perturbing normal physiological functions. Among these, especially s-triazine herbicides have received increased attention. Despite being banned in many countries, including the European Union, atrazine is still the world's most widely used herbicide. Despite its discontinued use, considerable concentrations of atrazine and its degradation products, mainly desethylatrazine (DEA) and deisopropylatrazine (DIA), are still found in the environment, including drinking water sources. The aim of this investigation was to study concentrations of especially s-triazine herbicides and major degradation products in drinking water, including spring water, tap water and bottled water in Luxembourg. Spring water (2007/2008/2009, n?=?69/69/69), tap water (2008/2009, n?=?19/26), and bottled water (2007/2008/2009, n?=?5/13/7) were sampled at locations in Luxembourg and investigated for pesticides by LC-ESI-MS/MS. Atrazine was the predominant triazine, detectable in many spring water locations, tap and bottled water, ranging (mean) from 0-57 (9), 0-44 (4), and 0-4 (1) ng?l(-1), respectively. DEA and DIA in spring water ranged (mean) from 0-120 (19) and 0-27 (3) ng?l(-1), with higher concentrations from agricultural areas and low molar ratios of DEA:atrazine <0.5 and high ratios of atrazine:nitrate suggesting point-source contamination. Levels (mean) of DEA and DIA in tap water were 0-62 (14) and 0-6 (<1) ng?l(-1) and in bottled water 0-11 (2) and 0-7 (2) ng?l(-1). Simazine and other triazines were detected in traces (<5?ng?l(-1)). Thus, the conducted monitoring suggested the presence of low concentrations of s-triazines in raw and finished water, presumably partly due to non-agricultural contamination, with concentrations being below thresholds advocated by the European Union Directive 98/83/EC.  相似文献   

6.
Atrazine is one of the most widely used herbicides in North America and has been primarily applied to corn production in the Great Lakes basin for over 30 years. During 1996-2002, atrazine concentrations in the atmospheric gas and particle phases were investigated at three Canadian Integrated Atmospheric Deposition Network (IADN) sites including two lakeside sites (Burnt Island and Point Petre) and a rural inland site (Egbert). Strong seasonality with peak concentrations occurring in late April-early July was observed. An atrazine usage map for Canada (sum: 870 t) and the United States (sum: 34 500 t) in 2002 was created. Local application and regional atmospheric transport both appear to contribute to its atmospheric occurrence, while the latter might episodically result in high concentrations events. No strong temperature dependence was observed for atrazine particle-gas partitioning. Recent measurement results of atrazine in precipitation samples collected at Egbert and another agricultural site, Vineland, through the Canadian Atmospheric Network for Currently Used Pesticides (CANCUP), are also presented, Dry, wet, and gas exchange deposition all contribute to atmospheric inputs of atrazine to the Great Lakes. For Lake Ontario, gas exchange is estimated to be of similar magnitude to dry and wet deposition.  相似文献   

7.
The Community Multiscale Air Quality (CMAQ) modeling system is adapted to simulate the regional transport and fate of atrazine, one of the most widely used herbicides in the United States. Model chemistry and deposition are modified, and a gas-to-particle partitioning algorithm is added to accommodate semivolatile behavior. The partitioning algorithm depends on humidity, temperature, and particulate matter concentration and composition. Results indicate that gaseous atrazine will usually dominate warm season atmospheric concentrations, but particulate form can surpass gas forms when atmospheric humidity is high (> 70%) and less-acidic (pH > 2.5) aqueous aerosol component is present. Implementation of the modified CMAQ for atrazine is illustrated, and, within the limits of our current understanding, preliminary transport and fate patterns appear to be reasonable. This research represents one of the first attempts to include a gas-to-particulate matter partitioning mechanism in an Eulerian grid-model.  相似文献   

8.
Atrazine, simazine, and propazine and their major chlorinated degradates (deethylatrazine, deisopropylatrazine, and didealkylatrazine) are considered as a group to be endocrine-disrupting chemicals by the U.S. Environmental Protection Agency. On this basis, regulatory action levels are currently under consideration for the total chloro-s-triazine (TCT) levels in drinking waters. To assess the concentrations of each of these species in drinking water and their treatability in conventional water treatment, a comprehensive, full-scale studywas conducted that included frequent monitoring at 33 and 47 water utilities during 2003 and 2004, respectively. Approximately 900 paired raw and treated water samples were analyzed using a gas chromatography/mass spectrometry method with preconcentration using a mixed-mode, solid-phase extraction that allowed quantitation of each species including didealkylatrazine. The results showed that atrazine concentrations were generally well within the 3 microg/L maximum contaminant level (MCL) and that simazine and propazine concentrations were generally negligible. Ninety-fifth-percentile values for the ratio of TCT/atrazine were 4.8 and 4.7, respectively. Effectiveness of conventional treatment technologies, including carbon, was observed to vary significantly. Concerns that didealkyatrazine concentrations may be high and significantly elevate the TCT appear to be unfounded. In general, the results suggest that potential treatment requirements for TCT are not likely to be any more difficult for utilities to meet than the current requirements for atrazine.  相似文献   

9.
Several pesticides have been hypothesized to act as endocrine-disrupting compounds, exhibiting hormonal activity and perturbing normal physiological functions. Among these, especially s-triazine herbicides have received increased attention. Despite being banned in many countries, including the European Union, atrazine is still the world's most widely used herbicide. Despite its discontinued use, considerable concentrations of atrazine and its degradation products, mainly desethylatrazine (DEA) and deisopropylatrazine (DIA), are still found in the environment, including drinking water sources. The aim of this investigation was to study concentrations of especially s-triazine herbicides and major degradation products in drinking water, including spring water, tap water and bottled water in Luxembourg. Spring water (2007/2008/2009, n?=?69/69/69), tap water (2008/2009, n?=?19/26), and bottled water (2007/2008/2009, n?=?5/13/7) were sampled at locations in Luxembourg and investigated for pesticides by LC-ESI-MS/MS. Atrazine was the predominant triazine, detectable in many spring water locations, tap and bottled water, ranging (mean) from 0–57 (9), 0–44 (4), and 0–4 (1) ng?l?1, respectively. DEA and DIA in spring water ranged (mean) from 0–120 (19) and 0–27 (3) ng?l?1, with higher concentrations from agricultural areas and low molar ratios of DEA:atrazine <0.5 and high ratios of atrazine:nitrate suggesting point-source contamination. Levels (mean) of DEA and DIA in tap water were 0–62 (14) and 0–6 (<1) ng?l?1 and in bottled water 0–11 (2) and 0–7 (2) ng?l?1. Simazine and other triazines were detected in traces (<5?ng?l?1). Thus, the conducted monitoring suggested the presence of low concentrations of s-triazines in raw and finished water, presumably partly due to non-agricultural contamination, with concentrations being below thresholds advocated by the European Union Directive 98/83/EC.  相似文献   

10.
莠去津是目前世界上使用范围最广、使用量最大的一种旱田除草剂,长期接触会损害人体健康,发展快速、简易、高灵敏检测食品中莠去津残留量的方法具有重要的现实意义。本文综述了近年来国内外食品中莠去津的主要检测技术及其研究进展,包括免疫分析法、色谱分析法和生物传感器法,对各种检测技术的检测原理、操作步骤及其各自的优缺点进行了比较分析。最后对食品中莠去津残留的检测技术在未来的发展方向作了展望。  相似文献   

11.
Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance.  相似文献   

12.
Tillage-induced erosion of herbicides bound to airborne soil particles has not been quantified as a mechanism for offsite herbicide transport. This study quantifies the release of two preemergent herbicides, metolachlor and pendimethalin, to the atmosphere as gas- and particle-phase species during soil incorporation operations. Fine particulate matter (PM2.5) and gas-phase samples were collected at three sampling heights during herbicide disking into the soil in Davis, CA, in May 2000 and May 2001 using filter/PUF sampling. Quartz fiber filters (QFFs) were used in May 2000, and Teflon membrane filters (TMFs) were used in May 2001. The field data were combined with laboratory filter/PUF partitioning experiments to account for adsorption to the filter surfaces and quantify the mass of PM2.5-bound herbicides in the field samples. Laboratory results indicate a significant adsorption of metolachlor, but not pendimethalin, to the quartz filter surfaces. Metolachlor partitioning to PM2.5 collected on TMF filters resulted in corrected PM2.5 field partition coefficient values, Kp,corr = Cp/Cg, of approximately 10(-3.5) m3/microg, indicating its preference for the gas phase. Pendimethalin exhibited more semivolatile behavior,with Kp,corr values that ranged from 10(-3) to 10(-1) m3/ microg and increased with sampling height and distance downwind of the operation. An increase in pendimethalin enrichment at a height of 5 m suggests winnowing of finer, more sorptive soil components with corresponding higher transport potential. Pendimethalin was enriched in the PM2.5 samples by up to a factor of 250 compared to the field soil, indicating thatfurther research on the processes controlling the generation of PM-bound herbicides during agricultural operations is warranted to enable prediction of off-site mass fluxes by this mechanism.  相似文献   

13.
Velocity constants of the decomposition reactions undergone by six herbicides when present in aqueous slurries of soils and clay were determined at 85°, 95° and 107°. It was assumed that biological action would not occur at these temperatures. Velocity constants at 20° were estimated by extrapolation. The results show that decomposition by purely chemical means is unlikely to be an important pathway of degradation for the herbicides studied, atrazine, chlorpropham, diuron, linuron, paraquat and picloram, as the half-lives at 20° would be in the range 9 to 116 years.  相似文献   

14.
This paper presents the atmospheric occurrence and seasonal variations of the most frequently detected organophosphorus insecticides (OPs) and their OP oxon degradation products at Bratt's Lake, Saskatchewan in the Canadian Prairies (April 2003 to March 2004, January-December, 2005) and at Abbotsford in the Lower Frazer Valley (LFV) of British Columbia from May 2004 to December, 2005. During 2005 there were 10 OPs, 8 OP oxons, and 6 other OP degradation products measured. The most frequently detected OPs were chlorpyrifos, malathion, and diazinon. At Bratt's Lake the highest atmospheric concentrations were observed for chlorpyrifos, with maximum concentrations observed during July and August in 2003 showing much higher concentrations than those from 2005. This was related to its usage for grasshopper control in the province. At Abbotsford, diazinon and malathion were observed in much higher atmospheric concentrations than chlorpyrifos. Concentrations reached maximum in spring for diazinon and summer for malathion. This study is the first reported study of seasonal variations of OP oxons with their parent OP. Chlorpyrifos oxon concentrations during July were generally low, indicating strong local source contributions. The chlorpyrifos oxon/chlorpyrifos ratio and diazinon oxon/diazinon ratio showed a strong seasonal variation with increasing ratio from spring to summer which was attributed to increasing sunlight hours. Malathion oxon/mathion at both sites was similar and relatively constant throughout the year. The oxon/thion ratio represents a good indicator of age of source or contributions from local versus regional atmospheric sources.  相似文献   

15.
A high spatial and temporal resolution atmospheric model is used to evaluate the potential contribution of fluorotelomer alcohol (FTOH) and perfluorocarboxylate (PFCA) emissions associated with the manufacture, use, and disposal of DuPont fluorotelomer-based products in North America to air concentrations of FTOH, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in North America and the Canadian Arctic. A bottom-up emission inventory for PFCAs and FTOHs was developed from sales and product composition data. A detailed FTOH atmospheric degradation mechanism was developed to simulate FTOH degradation to PFCAs and model atmospheric transport of PFCAs and FTOHs. Modeled PFCA yields from FTOH degradation agree with experimental smog-chamber results supporting the degradation mechanism used. Estimated PFCA and FTOH air concentrations and PFCA deposition fluxes are compared to monitoring data and previous global modeling. Predicted FTOH air concentrations are generally in agreement with available monitoring data. Overall emissions from the global fluorotelomer industry are estimated to contribute approximately 1-2% of the PFCAs in North American rainfall, consistent with previous global emissions estimates. Emission calculations and modeling results indicate that atmospheric inputs of PFCAs in North America from fluorotelomer-based products will decline by an order of magnitude in the near future as a result of current industry commitments to reduce manufacturing emissions and lower the residual fluorotelomer alcohol raw material and trace PFCA product content.  相似文献   

16.
A rapid and efficient method for the selective extraction of s-triazine herbicides in environmental samples was developed using an immunosorbent of monoclonal antiatrazine antibodies, which were encapsulated in a sol-gel glass matrix. The cross-reactivity of the antibody for analytes structurally related with atrazine enabled the simultaneous extraction of several s-triazine herbicides (atrazine, propazine, terbuthylazine, cyanazine, desethyl atrazine). After trace enrichment on the immunoextraction column, the s-triazines were desorbed by means of an acidic buffer (pH 2.5) and further extracted with ethyl acetate before being injected into the GC. Compared to liquid-liquid extraction and solid-phase extraction with a hydrophobic SDB-L support, the GC-NPD chromatograms obtained after immunoaffinity enrichment of surface water (river water) samples or soil extracts and analysis were free from matrix interferences. Nonspecific adsorption of humic acids was not observed. The method allows for the determination of the herbicides in linear ranges up to 1.5 microg/L with correlation coefficients higherthan 0.99 and relative standard deviations between 4% and 7% (n = 5). The LODs for 50-mL water samples were in the range 0.02 microg/L (atrazine, propazine) to 0.1 microg/L (desethyl atrazine) (S/N = 3). In addition to its high selectivity, the immunosorbent proved to be reusable for a significant number of preconcentration runs. However, the composition of samples may influence the lifetime of the column.  相似文献   

17.
Several recent studies have focused on the toxicodynamic implications of amphibian exposure to the commonly used herbicide atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine). These studies are an important part of the risk assessment process; however, the underlying mechanisms of atrazine toxicodynamics are lacking. In an attempt to more fully describe atrazine exposure, the toxicokinetics of atrazine were studied in stage-66 Xenopus laevis larvae. The absorption, distribution, and excretion capacity of these larvae were found to be comparable to those observed in fish. The calculated bioconcentration factor (BCF) was 1.5-1.6 mLwater/glarvae, and by use of whole-body autoradiography, the radiolabel was found to be concentrated in the gall bladder and gastrointestinal tract. Elimination of atrazine was rapid with a half-life of 48 min. The high metabolic capacity of stage-66 X. laevis larvae was demonstrated where, following 8 h of exposure to 14C-atrazine, the percentages of atrazine and its metabolites deethyldeisopropylatrazine (DACT), deisopropylatrazine (DIA), and deethylatrazine (DEA) in larvae, determined by thin-layer chromatography, were 49.8% +/- 3.3%, 9.8% +/- 2.1%, 16.1% +/- 2.5%, and 15.6% +/- 2.0%, respectively. An unknown metabolite(s) was also produced and accounted for the remaining proportion of the total body radioactive residues. This metabolite(s) is hypothesized to be a conjugate of either atrazine or one of its metabolites. These metabolites, namely, DIA, were responsible for the long elimination half-life (72 h) of the total body radioactive residues. These toxicokinetics data would provide better insights in the interpretation of toxicodynamic data.  相似文献   

18.
Diffuse losses from agricultural fields are a major input source for herbicides in surface waters. In this and in a companion paper, we present the results of a comprehensive field study aimed at assessing the overall loss dynamics of three model herbicides (i.e., atrazine, dimethenamid, and metolachlor) from a small agricultural catchment (2.1 km2) and evaluating the relative contributions of various fields having different soil and topographical characteristics. An identical mixture of the three model herbicides as well as an additional pesticide for identification of a given field were applied within 12 h on 13 cornfields (total area approximately 12 ha), thus ensuring that the herbicides were exposed to identical meteorological conditions. After the simultaneous application, the concentrations of the compounds were monitored in the soils and at the outlets of three subcatchments containing between 4 and 5 cornfields each. Particular emphasis was placed on the two rain events that led to the major losses of the herbicides. The rank orders of herbicide dissipation in the soils and of the compound-specific mobilization into runoff were the same in all three subcatchments and were independent of the field characteristics. In contrast, the field properties caused the relative losses from two subcatchments to differ by up to a factor of 56 during the most important event, whereas compound-specific differences of the three neutral herbicides caused the losses to vary only by a factor of 2 during the same event. The enormous spatial variability was mainly caused by factors influencing the fraction of rain that was lost to surface water by fast transport mechanisms. Thus, the key factors determining the spatially variable herbicide losses were the permeability of the soils, the topography, and the location of subsurface drainage systems. These results illustrate the large potential to reduce herbicide losses by avoiding application on risk areas.  相似文献   

19.
以优良品种海蔗22号作为供试材料,在苗期喷施除草剂敌草隆和莠去津,结果表明:敌草隆对于甘蔗栽培过程中常见的单子叶和双子叶杂草均有较好的除杀效果,而莠去津对于甘蔗栽培过程中常见的单子叶杂草除杀效果较差,对双子叶杂草除杀效果尚可。其中,以1.0 g/L敌草隆药液喷施,除草效果较佳。敌草隆和莠去津的喷施对于海蔗22号苗期的株高具有一定的抑制作用,而杂草的减少,有利于海蔗22号苗期干物质的积累。  相似文献   

20.
This study aimed to use surface-enhanced Raman spectroscopy (SERS) to detect herbicide residues (atrazine and arsenic trioxide) in drinking water. Gold-coated nanosubstrates were used in the SERS measurements to acquire enhanced Raman signals of herbicides in drinking water. Compared with the control, characteristic patterns of SERS spectra were distinguishable for atrazine at 3 ppb and arsenic trioxide at 1 ppb. Partial least squares analysis was used to develop quantitative models for detection of two herbicides in drinking water and calibration curves were plotted with R2 of 0.988 and 0.991 for atrazine and arsenic trioxide, respectively. The study of limit of detection (LOD) demonstrates that at 99.86 % confidence interval, SERS can detect both herbicides at 0.1 ppm in drinking water. Satisfactory recoveries were obtained for samples with concentration at and higher than the LOD (92.3–119.3 % for atrazine and 88.2–102.1 % for arsenic trioxide). These results demonstrate that SERS coupled with gold nanostructures holds great potential for rapid detection of herbicide residues and other chemical contaminants in drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号