首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions.  相似文献   

2.
We report the development of an immunoassay for the titration of antibody to the CD4-binding site (CD4BS) of the human immunodeficiency virus type 1 (HIV-1) surface glycoprotein gp120. This assay is a competitive enzyme-linked immunosorbent assay in which serum antibodies compete with labeled F105, a human monoclonal antibody whose corresponding epitope overlaps the conformation-dependent CD4BS, for binding to purified recombinant gp120 coated on a solid phase. Ninety-nine percent (109 of 110) of HIV-1-positive French patients and 91% (51 of 56) of HIV-1-positive African patients had CD4BS antibodies, indicating that the conformational CD4BS epitope is well conserved among different subtypes of HIV-1. Titers of CD4BS antibodies according to clinical status appeared to be not statistically different. A longitudinal study in 21 seroconverters showed that, for the majority of individuals, CD4BS antibodies appeared early and persisted at relatively high titers for several years. None of 21 HIV-2-seropositive patients had CD4BS antibodies in our assay, suggesting that the antibodies produced during HIV-2 infection are not cross-reactive with the CD4BS of HIV-1 gp120.  相似文献   

3.
Since HIV-1 infection results in severe immunosuppression, and the envelope protein gp120 has been reported to interact with some of the chemokine receptors on human T lymphocytes, we postulated that gp120 may also affect monocyte activation by a variety of chemokines. This study shows that human peripheral blood monocytes when preincubated with gp120 either purified from laboratory-adapted strains or as recombinant proteins exhibited markedly reduced binding, calcium mobilization, and chemotactic response to chemokines. The gp-120-pretreated monocytes also showed a decreased response to FMLP. This broad inhibition of monocyte activation by chemoattractants required interaction of gp120 with CD4, since the effect of gp120 was only observed in CD4+ monocytes and in HEK 293 cells only if cotransfected with both chemokine receptors and an intact CD4, but not a CD4 lacking its cytoplasmic domain. Anti-CD4 mAbs mimicked the effect of gp120, and both anti-CD4 Ab and gp120 caused internalization of CXCR4 in HEK 293 cells provided they also expressed CD4. Staurosporine blocked the inhibitory effect of gp120 on monocytes, suggesting that cellular signaling was required for gp120 to inhibit the response of CD4+ cells to chemoattractants. Our study demonstrates a broad suppressive effect of gp120 on monocyte activation by chemoattractants through the down-regulation of cell surface receptors. Thus, gp120 may be used by HIV-1 to disarm the monocyte response to inflammatory stimulation.  相似文献   

4.
This work extends our previous finding that lymphocyte treatment with gp120IIIB specifically induces CD4 association with several surface molecules to other molecules and to three other gp120s from different HIV-1 strains. The ability to induce this association was displayed by the four gp120s employed, i.e. gp120IIIB, gp120SF2, gp120MN and gp120(451), and the association patterns were different, as shown by both co-capping and immunoprecipitation. Co-capping showed that all four gp120s significantly potentiated CD4 association with CD3, CD45RA, CD45RB, CD38, CD26, CD59 and class I MHC molecules. By contrast, CD4 association with CD95 was induced only by gp120(451) and gp120MN; that with CD11a only by gp120SF2 and gp120MN; and that with CD27 and CD45RO only by gp120MN and gp120(451) respectively. All gp120s induced significant CD4 association with CD49d, but gp120SF2 displayed a significantly weaker effect than gp120IIIB. Induction of association was not mediated by inside-out signaling via the CD4-associated tyrosine kinase p58lck, since it was not inhibited by the tyrosine kinase inhibitors herbymicin and genistein, nor by CD45 bridging between CD4 and the associating molecule, since similar patterns of association were detected IN cells expressing different CD45 isoform patterns. Moreover, it was not mediated by chemokine receptors interacting with the gp120 V3 loop, since RANTES did not alter the gp120-induced CD4 association pattern. By contrast, the observation that gp120s from four HIV-1 strains induce different CD4 association patterns suggests that gp120 directly interacts with the associating molecules, possibly via their hypervariable regions.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) employs a number of complex strategies to interfere with the synthesis, stability, and subcellular localization of its specific cellular receptor CD4. To define better the mechanisms of inhibition of CD4 expression, we used a rabbit reticulocyte lysate in vitro system, in which cDNAs derived from HIV-1-infected cells were used to generate mRNA for the Tat, Vpu, and gp160 envelope proteins that were translated together with CD4-encoding mRNA. In the presence of microsomal membranes, we observed that cotranslation of Env mRNA resulted in a dose-dependent inhibition of CD4 translation. This effect was enhanced further when an mRNA-encoding Vpu in addition to Env mRNA was utilized. However, the activity of Vpu was mostly post-translational, since translation of Vpu alone, but not Env, was able to destabilize CD4 molecules presynthesized into microsomes. The Env-mediated inhibitory effect was specifically targeted at CD4 and did not affect the synthesis or stability of the CD8 molecule. Interestingly, mutated CD4 species, with a 20-fold lower affinity for HIV-1 Env than wild-type, were less sensitive to cotranslational inhibition. Our report identifies the envelope as the HIV-1 protein responsible for down-regulation of CD4 translation. We further propose a mechanism whereby direct interactions between gp160 and nascent CD4 molecules can cause interference with and premature termination of CD4 protein elongation.  相似文献   

6.
The binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120, to its cell surface receptor, CD4, represents a molecular interaction involving distinct alterations in protein structure. Consequently, the pattern of epitopes presented on the gp120-CD4 complex should differ from those on free gp120. To investigate this concept, mice were immunized with covalently crosslinked complexes of viral HIV-1IIIBgp120 and soluble CD4. Two monoclonal antibodies (MoAbs) obtained from the immunized mice exhibited a novel epitope specificity. The MoAbs were marginally reactive with HIV-1IIIBgp120, highly reactive with gp120-CD4 complexes, and unreactive with soluble CD4. The same pattern of reactivity was seen in solid-phase assays using HIV-1(451)gp120. A similar specificity for complexes was evident in flow cytometry experiments, in which MoAb reactivity was dependent upon the attachment of gp120 to CD4-positive cells. In addition, MoAb reactivity was detected upon the interaction of CD4 receptors with purified HIV-1IIIB virions. Notably, seroantibodies from HIV-positive individuals competed for MoAb binding, indicating that the epitope is immunogenic in humans. The results demonstrated that crosslinked gp120-CD4 complexes elicit antibodies to cryptic gp120 epitopes that are exposed during infection in response to receptor binding. These findings may have important implications for the consideration of HIV envelope-receptor complexes as targets for virus neutralization.  相似文献   

7.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 DeltaalphaHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1alpha, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4(+)/CD4(-) cells but not to CXCR4(-)/CD4(-) cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 DeltaalphaHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4(+) cells. Nevertheless, the soluble gp120 DeltaalphaHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking alphaHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 DeltaalphaHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

8.
We have developed an assay, using a biosensor matrix and surface plasmon resonance, that rapidly and reproducibly measures antibody reactivity to human immunodeficiency virus type 1 (HIV-1) gp120 in various structural conformations. In particular, antibodies displaying preferential reactivity to a CD4-binding competent ("native," rgp120) or CD4-binding incompetent ("reduced," rcmgp120) monomeric gp120 molecule were distinguished. This technique has advantages over conventional enzyme-linked immunosorbent assay (ELISA) methodology in which it is difficult to control the concentration of protein adsorbed to the ELISA wells and a significant disruption of protein structure occurs on adsorption. A population of gp120 molecules that lacked CD4 receptor binding capacity and bound antibodies specific for reduced gp120 was found in several native gp120 preparations. The relative amount of this CD4-binding incompetent population varied among the various preparations studied. This presence of CD4-binding incompetent molecules within various native recombinant gp120 preparations may have implications for HIV-1 envelope vaccine development. By measuring antibody-binding ratios, several monoclonal antibodies were identified, which, although elicited by immunization with various native gp120 preparations, bound specifically to reduced gp120. The ability to screen antibody specificity against HIV-1 envelope proteins with different conformations will assist in determining the quality of antibodies induced by various HIV-1 envelope vaccine candidates.  相似文献   

9.
Despite the ability of soluble forms of CD4 (sCD4) and related CD4 derivatives to neutralize human immunodeficiency type 1 (HIV-1) infectivity in vitro, these agents have shown little evidence of efficacy in clinical trials with infected individuals. These disappointing findings may be related to recent observations that much higher concentrations of sCD4 are required for in vitro neutralization of primary HIV-1 isolates compared to laboratory-adapted strains. An alternative CD4-based therapeutic strategy exploits CD4 as a targeting agent to direct cytotoxic molecules to selectively kill HIV-infected cells. In this report we demonstrate that CD4-Pseudomonas exotoxin inhibits spreading infection by primary HIV-1 isolates known to be highly refractory to neutralization by soluble CD4; the observed potency is at least as great as for a prototypic sCD4-sensitive, laboratory-adapted HIV-1 strain. Thus, the in vitro efficacy of a CD4-based agent, which acts by targeted killing of infected cells, appears not to be compromised by features which render primary HIV-1 isolates refractory to neutralization by sCD4 derivatives. These results have important conceptual and practical implications for CD4-based therapeutic strategies.  相似文献   

10.
AIDS is characterized by a progressive decrease of CD4(+) helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56(lck) and Gialpha. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4(+) but not in CD8(+) T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.  相似文献   

11.
The external domain of the envelope glycoprotein, gp120, of simian immunodeficiency virus (SIV) has been expressed as a mature secreted product using recombinant baculoviruses and the expressed protein, which has an observed molecular mass of 110 kDa, was purified by monoclonal antibody (MAb) affinity chromatography. N-terminal sequence analysis showed a signal sequence cleavage identity similar to that of the gp120s of both human immunodeficiency virus type 1 (HIV-1) and HIV type 2. The expressed molecule bound to soluble CD4 with an affinity that was approximately 10-fold lower than that of gp120 from HIV-1. A screening of the ability of SIV envelope MAbs to inhibit CD4 binding revealed two groups of inhibitory MAbs. One group is dependent on conformation, while the second group maps to a discrete epitope near the amino terminus. The particular role of the V3 loop region of the molecule in CD4 binding was investigated by the construction of an SIV-HIV hybrid in which the V3 loop of SIV was precisely replaced with the equivalent domain from HIV-1 MN. The hybrid glycoprotein bound HIV-1 V3 loop MAbs and not SIV V3 MAbs but continued to bind conformational SIV MAbs and soluble CD4 as well as the parent molecule.  相似文献   

12.
The use of chimeras of rat and human CD4 to probe the HIV-1 gp120 and antibody binding properties of CD4 is reviewed. Short segments of human CD4 sequence were substituted for the equivalent regions of rat CD4 which does not bind gp120, and analysis of the properties of these chimeras established: (i) that residues 33-58 of the NH2-terminal domain of human CD4 encompass the high-affinity gp120 binding site; and (ii) that chimeras containing residues 33-62 mediate HIV-1 infection. The chimera-binding specificities of gp120 and a large panel of anti-CD4 antibodies were also determined. This allowed a critical test of the popular notion that receptor mimics appear at high frequency among antibodies elicited by immunization with receptor ligands and that anti-idiotypic antibodies can be used to identify novel receptors. The data suggest that such mimics appear infrequently, if at all, a result which is consistent with the failure of the anti-idiotype approach to identify new genes encoding receptors with prescribed functions.  相似文献   

13.
The substantial virus lysis was induced by HIV-1-infected patient serum and normal human complement serum in the presence of purified patient IgG. Non-infected CD4+ T cells coated with the whole virus or with a recombinant HIV-1 envelope gp120 and sensitised with patient IgG were also shown to be susceptible to complement-dependent lysis. The serum level of complement regulatory protein in a fluid phase, the C1-esterase inhibitor, was significantly correlated with serum concentration of C1q-circulating immune complexes (P=0.0062), but inversely with CD4+ T cell count (P < 0.0001). Accordingly, the disease progression in HIV-1-infected patients was significantly correlated with the level of complement activation as determined by serum level of C1-esterase inhibitor (P=0.0001), and inversely correlated with CD4+ cell count (P < 0. 0001) and gp120-specific antibody titre (P=0.0086). These results strongly suggest that the complement activation by gp120-specific antibodies play a very important role in virus clearance, but also in depletion of infected as well as gp120-coated non-infected CD4+ bystander T cells during the course of HIV-1 infection.  相似文献   

14.
The interaction of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 with CD4 CDR3-related peptide derivatives showing anti-HIV-1 activity has been studied. Conformational changes in gp120, which could affect its interaction with CD4 and its shedding from virions, were detected by fluorescence spectrum analysis of tryptophan residues after addition of peptide representative of the CD4 CDR3-related region, but not the CD4 CDR2-related region. Interestingly, the addition of scrambled peptide, S1 (with altered amino acid sequence compared with the native CDR3-related peptide but unaltered overall composition), which we recently showed to have stronger anti-HIV-1 activity than the original CDR3-related peptide, had no effects on the conformational change in gp120 or on its interaction with CD4 and its shedding from HIV-1 virions. However, all of the CDR3-related peptides, including S1, showed blocking effects on the binding of antibodies against gp120 V3 loop and C-terminus regions. Thus, we concluded that there were at least two separable activities of the CDR3-related peptides in anti-HIV-1 activity, i.e. induction of conformational changes in gp120, which could affect its binding to CD4 and to gp41 (as observed in native CDR3-related peptides), and inactivation of V3 loop and C-terminus regions in gp120 (as observed in all of the CDR3-related peptides, including S1).  相似文献   

15.
The mechanism of CD4-mediated fusion via activated human immunodeficiency virus type 1 (HIV-1) gp41 and the biological significance of soluble CD4 (sCD4)-induced shedding of gp120 are poorly understood. The purpose of these investigations was to determine whether shedding of gp120 led to fusion activation or inactivation. BJAB cells (TF228.1.16) stably expressing HIV-1 envelope glycoproteins (the gp120-gp41 complex) were used to examine the effects of pH and temperature on sCD4-induced shedding of gp120 and on cell-to-cell fusion (syncytium formation) with CD4+ SupT1 cells. sCD4-induced shedding of gp120 was maximal at pH 4.5 to 5.5 and did not occur at pH 8.5. At physiologic pH, sCD4-induced shedding of gp120 occurred at 22, 37, and 40 degrees C but neither at 16 nor 4 degrees C. In contrast, syncytia formed at pH 8.5 (maximally at pH 7.5) but not at pH 4.5 to 5.5. At pH 7.5, syncytia formed at 37 and 40 degrees C but not at 22, 16, or 4 degrees C. Preincubation of cocultures of TF228.1.16 and SupT1 cells at 4, 16, or 22 degrees C before the shift to 37 degrees C resulted in similar, increased, or decreased syncytium formation, respectively, compared with the control. Furthermore, an activated intermediate of CD4-gp120-gp41 ternary complex may form at 16 degrees C; this intermediate rapidly executes fusion upon a shift to 37 degrees C but readily decays upon a shift to the shedding-permissive but fusion-nonpermissive temperature of 22 degrees C. These physicochemical data indicate that shedding of HIV-1 gp120 is not an integral step in the fusion cascade and that CD4 may inactivate the fusion complex in a process analogous to sCD4-induced shedding of gp120.  相似文献   

16.
Recent evidence suggests that primary patient isolates of T-cell-tropic human immunodeficiency virus type 1 (HIV-1 ) have lower affinities for CD4 than their laboratory-adapted derivatives, that this may partly result from tighter gp120-gp41 bonds that constrain the CD4 binding sites of the primary viruses, and that selection for increased CD4 affinity may be the principal factor in laboratory adaptation of HIV-1 (S. L. Kozak, E. J. Platt, N. Madani, F. E. Ferro, Jr., K. Peden, and D. Kabat, J. Virol. 71:873-882, 1997). These conclusions were based on studies with a panel of HeLa-CD4 cell clones that differ in CD4 levels over a broad range, with laboratory-adapted viruses infecting all clones with equal efficiencies and primary T-cell-tropic viruses infecting the clones in proportion to cellular CD4 levels. Additionally, all of the primary and laboratory-adapted T-cell-tropic viruses efficiently used CXCR-4 (fusin) as a coreceptor. To test these conclusions by an independent approach, we studied mutations in the laboratory-adapted virus LAV/IIIB that alter the CD)4 binding region of gp120 and specifically reduce CD4 affinities of free gp 120 by 85 to 98% (U. Olshevsky et al., J. Virol. 64:5701-5707, 1990). These mutations reduced virus titers to widely varying extents that ranged from severalfold to several orders of magnitude and converted infectivities on the HeLa-CD4 panel from CD4 independency to a high degree of CD4 dependency that resembled the behavior of primary patient viruses. The relative infectivities of the mutants correlated closely with their sensitivities to inactivation by soluble CD4 but did not correlate with the relative CD4 affinities of their free gp120s. Most of the mutations did not substantially alter envelope glycoprotein synthesis, processing, expression on cell surfaces, incorporation into virions, or rates of gp120 shedding from virions. However, one mutation (D457R) caused a decrease in gp160 processing by approximately 80%. The fact that several mutations increased rates of spontaneous viral inactivation (especially D368P) suggests that HIV-1 life spans may be determined by structural stabilities of viral envelope glycoproteins. All of the wild-type and mutant viruses were only slowly and inefficiently adsorbed onto cultured CD4-positive cells at 37 degrees C, and the gradual declines in viral titers in the media were caused almost exclusively by spontaneous inactivation rather than by adsorption. The extreme inefficiency with which infectious HIV-1 is able to infect cultured susceptible CD4-positive cells in standard assay conditions casts doubt on previous inferences that the vast majority of retrovirions produced in cultures are noninfectious. Apparent infectivity of T-cell-tropic HIV-1 in culture is limited by productive associations with CD4 and is influenced in an interdependent manner by CD4 affinities of viral gp120-gp41 complexes and quantities of cell surface CD4.  相似文献   

17.
Cytokines are potent stimuli for CD4(+)-T-cell differentiation. Among them, interleukin-12 (IL-12) and IL-4 induce naive CD4(+) T cells to become T-helper 1 (Th1) or Th2 cells, respectively. In this study we found that macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains replicated more efficiently in IL-12-induced Th1-type cultures derived from normal CD4(+) T cells than did T-cell-line-tropic (T-tropic) strains. In contrast, T-tropic strains preferentially infected IL-4-induced Th2-type cultures derived from the same donor CD4(+) T cells. Additional studies using chimeric viruses demonstrated that the V3 region of HIV-1 gp120 was the principal determinant for efficiency of replication. Cell fusion analysis showed that cells expressing envelope protein from a T-tropic strain effectively fused with IL-4-induced Th2-type culture cells. Flow cytometric analysis showed that the level of CCR5 expression was higher on IL-12-induced Th1-type culture cells, whereas CXCR4 was highly expressed on IL-4-induced Th2-type culture cells, although a low level of CXCR4 expression was observed on IL-12-induced Th1-type culture cells. These results indicate that HIV-1 isolates exhibit differences in the ability to infect CD4(+)-T-cell subsets such as Th1 or Th2 cells and that this difference may partly correlate with the expression of particular chemokine receptors on these cells. The findings suggest that immunological conditions are one of the factors responsible for inducing selection of HIV-1 strains.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is a multistep process initiated by envelope protein gp120 binding to cell surface CD4. The conformational changes induced by this interaction likely favor a second-step interaction between gp120 and a coreceptor such as CXCR4 or CCR5. Here, we report a spontaneous and stable CD4-independent entry phenotype for the HIV-1 NDK isolate. This mutant strain, which emerged from a population of chronically infected CD4-positive CEM cells, can replicate in CD4-negative human cell lines. The presence of CXCR4 alone renders cells susceptible to infection by the mutant NDK, and infection can be blocked by the CXCR4 natural ligand SDF-1. Furthermore, we have correlated the CD4-independent phenotype with seven mutations in the C2 and C3 regions and the V3 loop. We propose that the mutant gp120 spontaneously acquires a conformation allowing it to interact directly with CXCR4. This virus provides us with a powerful tool to study directly gp120-CXCR4 interactions.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

20.
Infection by some human immunodeficiency virus type 1 (HIV-1) isolates is enhanced by the binding of subneutralizing concentrations of soluble receptor, soluble CD4 (sCD4), or monoclonal antibodies directed against the viral envelope glycoproteins. In this work, we studied the abilities of different antibodies to mediate activation of the envelope glycoproteins of a primary HIV-1 isolate, YU2, and identified the regions of gp120 envelope glycoprotein contributing to activation. Binding of antibodies to a variety of epitopes on gp120, including the CD4 binding site, the third variable (V3) loop, and CD4-induced epitopes, enhanced the entry of viruses containing YU2 envelope glycoproteins. Fab fragments of antibodies directed against either the CD4 binding site or V3 loop also activated YU2 virus infection. The activation phenotype was conferred on the envelope glycoproteins of a laboratory-adapted HIV-1 isolate (HXBc2) by replacing the gp120 V3 loop or V1/V2 and V3 loops with those of the YU2 virus. Infection by the YU2 virus in the presence of activating antibodies remained inhibitable by macrophage inhibitory protein 1beta, indicating dependence on the CCR5 coreceptor on the target cells. Thus, antibody enhancement of YU2 entry involves neither Fc receptor binding nor envelope glycoprotein cross-linking, is determined by the same variable loops that dictate enhancement by sCD4, and probably proceeds by a process fundamentally similar to the receptor-activated virus entry pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号