首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The experimental evaluation of the divertor plasma facing components (PFCs) lifetime under transient events, such as edge localized modes (ELMs) and high heat flux (HHF) thermal fatigue expected during ITER normal operations and slow transient events is here presented. The experiments have been performed in the frame of an EU/RF collaboration. For carbon fiber composite material the erosion is caused by PAN fiber damage whilst the erosion of tungsten is determined by the melt layer movement and crack formation. The conclusion of this study is that, in addition to the structural change produced in the armor materials by ELMs-like loads, some mock ups showed also a degradation of the thermal fatigue performances  相似文献   

2.
This paper deals with the empirical evaluation of the plasma facing components (PFCs) lifetime under transient events, such as type I edge localized modes (ELMs), and high heat flux (HHF) thermal fatigue expected during ITER normal operations and slow transient events. The first results of experiments which are ongoing in the frame of an EU/RF collaboration are presented, in particular the results of the first campaign of exposure to ELMs-like load and HHF thermal fatigue performed on PFC monoblock mock ups. For carbon-fiber composite material the erosion was determined by the analysis of the PAN fibres. The erosion of tungsten is reported as melt layer movement and crack formation. As a preliminary result of the experiments performed one can say that the mock up power handling capability seems so far not to be affected by the ELMs and HHF cycling tests.  相似文献   

3.
The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal–mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor con?guration is under construction in SWIP, where ITER-like ?at-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak.  相似文献   

4.
In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, high heat flux tests were performed in the electron beam facility FE200, Le Creusot, France. Thereby, in total eight small-scale and three medium-scale monoblock mock-ups produced with different manufacturing technologies and different tungsten grades were exposed to cyclic steady state heat loads. The applied power density ranges from 10 to 20 MW/m2 with a maximum of 1000 cycles at each particular loading step. Finally, on a reduced number of tiles, critical heat flux tests in the range of 30 MW/m2 were performed.Besides macroscopic and microscopic images of the loaded surface areas, detailed metallographic analyses were performed in order to characterize the occurring damages, i.e., crack formation, recrystallization, and melting. Thereby, the different joining technologies, i.e., hot radial pressing (HRP) vs. hot isostatic pressing (HIP) of tungsten to the Cu-based cooling tube, were qualified showing a higher stability and reproducibility of the HIP technology also as repair technology. Finally, the material response at the loaded top surface was found to be depending on the material grade, microstructural orientation, and recrystallization state of the material. These damages might be triggered by the application of thermal shock loads during electron beam surface scanning and not by the steady state heat load only. However, the superposition of thermal fatigue loads and thermal shocks as also expected during ELMs in ITER gives a first impression of the possible severe material degradation at the surface during operational scenarios at the divertor strike point.  相似文献   

5.
Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising Li results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept [1]. In the RLLD, Li is evaporated from the liquid lithium (LL) coated divertor strike point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating divertor heat removal. The modeling results indicated that the Li radiation can be quite strong, so that only a small amount of Li (∼a few mol/s) is needed to significantly reduce the divertor peak heat flux for typical reactor parameters. In this paper, we examine an active version of the RLLD, which we term ARLLD, where LL is injected in the upstream region of divertor. We find that the ARLLD has similar effectiveness in reducing the divertor heat flux as the RLLD, again requiring only a few mol/s of LL to significantly reduce the divertor peak heat flux for a reactor. An advantage of the ARLLD is that one can inject LL proactively even in a feedback mode to insure the divertor peak heat flux remains below an acceptable level, providing the first line of defense against excessive divertor heat loads which could result in damage to divertor PFCs. Moreover, the low confinement property of the divertor (i.e., <1 ms for Li particle confinement time) makes the ARLLD response fast enough to mitigate the effects of possible transient events such as large ELMs.  相似文献   

6.
Actively cooled divertor mock-ups consisting of various low-Z armor tiles brazed to refractory metal heat sinks were tested in the electron beam test facility at Jülich. Screening and thermal cycling tests were perfomed on the mock-ups to estimate the overall thermal performance under cyclic high heat flux (HHF) loadings. By detecting the temperature of the armor surface and the braze layer, it was possible to assess the heat removal capability and the accumulation of interfacial damage. Microstructures were investigated to elucidate the degradation of the joints. Finite element analyses are carried out for the simulated HHF test conditions. Temperature fields and thermal stresses are calculated for a typical divertor module. The nature of thermomechanical behavior of the divertor mock-ups under cyclic HHF loadings is discussed.  相似文献   

7.
《Fusion Engineering and Design》2014,89(7-8):1003-1008
Thermal and structural responses of divertor target were evaluated by using finite element method. High heat flux simulating ELMs at the level of 100 MW/m2 was assumed onto the tungsten armor, and surface temperature profile was obtained. When dynamic heat load over 100 MW/m2 was applied, the maximum surface temperature exceeded 1300 °C, and it caused recrystallization of tungsten regardless of the heat transfer below it. The result was used to conduct dynamic heat load experiment on tungsten, and material behavior of tungsten was evaluated under dynamic heat load. This study also proposed new concept of divertor heat sink which can distribute high heat flux and transfers the heat to high temperature medium. It consists of tungsten armor, composite enhanced with high thermal conductivity fiber, and heat transport system applying phase transition. High heat flux simulating ELMs was also applied to target surface of the divertor, temperature gradient, thermal stress of tungsten and composite were evaluated. Based on the results of analysis, thermal structural requirement was considered.  相似文献   

8.
Transient events such as Edge Localized Modes (ELMs) or disruptions can lead to large particle and power loads on the divertor plates of tokamak experiments. These events can cause significant erosion and are detrimental to the lifetime of the plasma facing components. Understanding the impact of ELMs remains a complex problem and a major challenge. In this study, an effort is made to characterize these ELMs and other transients based on their characteristics using a particle flux probe and surface temperature measurements from a dual-band IR camera. Typically, the temporal evolution of an ELM from the particle flux probe is characterized by a steep rise and a gradual decrease of current signal. This burst like structure is seen by the Langmuir probes as a rise in the ion saturation current with a width of a few milliseconds. This study entails gathering statistics of typical ELM-like events for various shots in order to assess the typical loading of ELMs on the Liquid Lithium Divertor (LLD) that was installed in the FY10 run campaign. Later, the power deposition profiles during ELMs are also characterized from IR camera measurements for certain discharges to find that only 15% of the energy flux arrives at the divertor target before the surface temperature reached its maximum value. Finally, a correlation was found between the particle flux from the probes during the ELMs and the neutral particle flux from Dα signal indicating the utility of the particle flux probe as a means to characterize ELMs.  相似文献   

9.
Divertor plasma-facing components of future fusion reactors should be able to withstand heat fluxes of 10-20 MW/m2 in stationary operation. Tungsten blocks with an inner cooling tube made of CuCr1Zr, so-called monoblocks, are potential candidates for such water-cooled components. To increase the strength and reliability of the interface between the W and the cooling tube of a Cu-based alloy (CuCr1Zr), a novel advanced W-fibre/Cu metal matrix composite (MMC) was developed for operation temperatures up to 550 °C. Based on optimization results to enhance the adhesion between fibre and matrix, W fibres (Wf) were chemically etched, coated by physical vapour deposition with a continuously graded W/CuPVD interlayer and then heated to 800 °C. The Wf/Cu MMC was implemented by hot-isostatic pressing and brazing process in monoblock mock-ups reinforcing the interface between the plasma-facing material and the cooling channel. The suitability of the MMC as an efficient heat sink interface for water-cooled divertor components was tested in the high heat flux (HHF) facility GLADIS. Predictions from finite element simulations of the thermal behaviour of the component under loading conditions were confirmed by the HHF tests. The Wf/Cu MMC interlayer of the mock-ups survived cyclic heat loads above 10 MW/m2 without any damage. One W block of each tested mock-up showed stable thermal behaviour at heat fluxes of up to 10.5 MW/m2.  相似文献   

10.
Thermal properties of the redeposition layer on the inner plate of the W-shaped divertor of JT-60U have been measured with laser flash method so as to estimate transient heat loads onto the divertor. Morphology analysis of the redeposition layer was conducted with a scanning electron microscope. Measurement of a redeposition layer sample of more than 200 μm thick, which had been produced near the most frequent striking point, showed following results: (1) the bulk density of the redeposition layer is about half of that of carbon fiber composite material; (2) the specific heat of the layer is roughly equal to that of the isotropic graphite; (3) the thermal conductivity of the redeposition layer is two orders of magnitude smaller than that of the carbon fiber composite. This low thermal conductivity of the redeposition layer is considered to be caused by a low graphitization degree of the redeposition layer. The difference between the divertor heat loads and the loss of the plasma stored energy becomes smaller taking account of thermal properties of the redeposition layer on the inner divertor, whereas estimated heat loads due to the ELMs is still larger than the loss. This is probably caused by the poloidal distribution of the thermal properties.  相似文献   

11.
Divertor and other in-vessel components are very important parts of EAST superconducting Tokamak. The primary purpose of these components is to protect the vacuum vessel, RF system and diagnostic components from plasma particles and heat loads. Other function of in-vessel components is additional to particles and heat loads handling. The divertor is designed to provide particles exhaust into the divertor cryopump, provide recycling control and impurity control. Passive plates stabilize plasma vertical instability. In-vessel coils are used for plasma instability control, error field correct, RWM and ELMs suppress. Heat loads and electric–magnetic forces are quite complicate for in-vessel components. To make the design of in-vessel components, we consider their proper geometry, structure strength, electro–magnetic characteristic, thermal conductive characteristic, particles exhaust characteristic and so on.  相似文献   

12.
Multi-element doped graphite,GBST1308 has been developed as a plasma facing material(PFM) for high heat flux components of the HT-7U device.The thermal performance of the material under steady-state(SS) high heat flux was evaluated under actively cooling conditions,the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces.The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100kW electron gun in order to test the suitability and the loading limit of such materials.The surface temperature and bulk temperature distribtuion of the specimens were investigated.The experimental results are very encouraging that when heat flux is not more than 6 MW/m^2,the surface temperature of GBST1308 is less than 1000℃,which is the lowest,compared with IG-430U and even with CX-2002U(CFC),The primary results indicate that the mechanically-joined material system by such a proper design as thin tile.Super compliant layer,GBST as PFM and copper-alloy heat sink,can be used as divertor plater for HT-7U in the first phase.  相似文献   

13.
Precipitation-hardened CuCrZr alloy is used in fusion experiments as heat sink material for water-cooled plasma-facing components. When exposed to long-term high-heat-flux (HHF) plasma operation, CuCrZr will undergo over-ageing and thus plastic softening. In this situation, the softened CuCrZr heat sink tube will suffer from substantial plastic straining and thus fatigue damage in the course of the cyclic HHF loads. In this paper, a computational case study is presented regarding the cyclic plasticity behaviour of the over-aged CuCrZr cooling tube in a water-cooled tungsten mono-block divertor component. Finite element analysis was performed assuming ten typical HHF load cycles and using the Frederick-Armstrong constitutive equation together with corresponding material parameters. It was shown that plastic shakedown and low cycle fatigue (LCF) would be caused in the heat sink tube when softening of CuCrZr should occur. On the other hand, neither elastic shakedown nor cumulative plastic strain (ratchetting) was found. LCF design life of the CuCrZr tube was estimated based on the ITER materials handbook considering both hardened and softened states of CuCrZr. Substantial impact of softening of the CuCrZr alloy on the LCF lifetime of the heat sink tube was demonstrated.  相似文献   

14.
The stellarator Wendelstein 7-X (W7-X) has a divertor consisting of 10 units installed inside the plasma vessel (PV). It was decided not to install the long pulse high-heat flux (HHF) divertor targets at the first two years stage of W7-X operation and to start with an adiabatically cooled test divertor unit (TDU) and shorter plasma pulses operation. This allows to accumulate operation experience with much simpler components, and as a result to adjust accurately the actively cooled HHF divertor which replaces the TDU for the stationary operation. Finite element (FE) analyses have been performed for better understanding of thermo-mechanical problems of divertor targets, and to guide the design of the TDU and HHF divertors. This paper presents the detailed results of the temperature response, the deformation and thermal stress of the divertor components.  相似文献   

15.
Resonant magnetic perturbations (RMPs) with high toroidal mode number n are considered for controlling edge-localized modes (ELMs) and divertor heat flux in future ITER H-mode operations. In this paper, characteristics of divertor heat flux under high-n RMPs (n = 3 and 4) in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST. Additional splitting strike point (SSP) accompanying with ELM suppression is observed under both RMPs with n = 3 and n = 4, the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint. Although RMPs suppress ELMs, they increase the stationary heat flux during ELM suppression. The dependence of heat flux on ${q}_{95}$ during ELM suppression is preliminarily investigated, and further splitting in the original strike point is observed at ${q}_{95}=4$ during ELM suppression. In terms of ELM pulses, the presence of RMPs shows little influence on transient heat flux distribution.  相似文献   

16.
The divertor target components for the Chinese fusion engineering test reactor (CFETR) and the future experimental advanced superconducting tokamak (EAST) need to remove a heat flux of up to ~20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure (TTS)are designed in the heat sink to improve the flat-tile divertor target's heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height (H),width (W*),thickness (T),and spacing (L),on the HTP.The research results show that the flat-tile divertor target's HTP is sensitive to the TTS parameter changes,and the sensitivity is T > L > W* > H.The HTP first increases and then decreases with the increase of T,L,and W* and gradually increases with the increase of H.The optimal design parameters are as follows:H =5.5 mm,W* =25.8 mm,T =2.2 mm,and L =9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux (HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2 under the tungsten tile thickness<5 mm and the flow speed ≥7 m s-1.The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by ~ 13% and ~30% compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of 20 MW m-2 of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only ~930 ℃.The fiat-tile divertor target's HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the fiat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.  相似文献   

17.
The stellarator experiment Wendelstein 7-X (W7-X) is designed for stationary plasma operation (30 min). Plasma facing components (PFCs) such as the divertor targets, baffles, heat shields and wall panels are being installed in the plasma vessel (PV) in order to protect it and other in-vessel components. The different PFCs will be exposed to different magnitude of heat loads in the range of 100 kW/m2–10 MW/m2 during plasma operation. An important issue concerning the design of these PFCs is the thermo-mechanical analysis to verify their suitability for the specified operation phases. A series of finite element (FE) simulations has been performed to achieve this goal. Previous studies focused on the test divertor unit (TDU) and high heat flux (HHF) target elements. The paper presents detailed FE thermo-mechanical analyses of a prototype HHF target module, baffles, heat shields and wall panels, as well as benchmarking against tests.  相似文献   

18.
The in-vessel components of Wendelstein 7-X (W7-X) with a total surface of 265 m2 comprise the divertor and the wall protection. The high heat flux (HHF) and lower heat flux (LHF) target, the baffle, the end plates closing the divertor chamber, a cryo vacuum pump (CVP) and a control coil form one divertor unit. Steel panels and the graphite heat shield protect the wall, including the ports. The HHF target elements, the steel panels and the control coils are manufactured by industry. The remaining components will be manufactured by the Max-Planck-Institute für Plasmaphysik (IPP) at its Garching workshops. For all components the final acceptance tests will be performed by IPP. This paper summarizes the main aspects for manufacturing, the preceding development and qualification tests as well as the final acceptance tests for the in-vessel components.  相似文献   

19.
《Fusion Engineering and Design》2014,89(7-8):1037-1041
The target elements of the actively cooled high heat flux (HHF) divertor of Wendelstein 7-X are made of CFC (carbon fiber-reinforced carbon composite) tiles bonded to a CuCrZr heat sink and are mounted onto a support frame. During operation, the power loading will result in the thermal expansion of the target elements. Their attachment to the support frame needs to provide, on the one hand, enough flexibility to allow some movement to release the induced thermal stresses and, on the other hand, to provide enough stiffness to avoid a misalignment of one target element relative to the others. This flexibility is realized by a spring element made of a stack of disc springs together with a sliding support at one of the two or three mounting points. Detailed finite element calculations have shown that the deformation of the heat sink leads to some non-axial deformation of the spring elements. A mechanical test was performed to validate the attachment design under cyclic loading and to measure the deformations typical of the expected deformation of the elements. The outcome of this study is the validation of the design selected for the attachment of the target elements, which survived experimentally the applied mechanical cycling which simulates the thermal cycling under operation.  相似文献   

20.
The plasma-facing components (PFCs) of the ITER divertor will be subjected to high heat flux (HHF). Carbon–fibre composite (CFC) is selected as the armour for the region of highest heat flux where the scrape-off layer of the plasma intercepts the vertical targets (VT). Failure of the armour to heat sink joints will compromise the performance of the divertor and could ultimately result in its failure and the shut down of the ITER machine. There are tens of thousands of CFCs to CuCrZr joints. The aim of the PFC design is to ensure that the divertor can continue to function even with the failure of a few joints. In preparation for writing the procurement specification for the ITER vertical target PFCs, a programme of work is underway with the objective of defining workable acceptance criteria for the PFC armour joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号