共查询到19条相似文献,搜索用时 72 毫秒
1.
2.
以六苄基六氮杂异伍兹烷(HBIW)为母体,用含Pd催化剂,在温和条件下,通过选择性催化氢解脱苄,使部分或全部苄基被其它官能团(如H-,C2H5-,CHP-,CH3CO-)取代,合成了五种川—取代六氮杂异伍兹烷,并鉴定了它们的结构。对四乙酰基二甲酰基六氮杂异伍兹烷(TAD—FIW)和六乙酰基六氮杂异伍兹烷(HAIW)的单晶进行了X—射线衍射分析,得到了二者的分子结构和晶胞内分子堆积图。这五种N-取代六氮杂异伍兹烷均可以作为六硝基六氮杂异伍兹烷(HNIW)的前体。 相似文献
3.
四乙酰基二苄基六氮杂异伍兹烷氢解脱苄反应动力学研究 总被引:1,自引:0,他引:1
研究了常压下以Pd/C为催化剂由四乙酰基二苄基六氮杂异伍兹烷(TADB)氢解脱苄合成四乙酰基六氮杂异伍兹烷(TAIW)的反应动力学。结果表明,在本实验条件下从反应开始到反应完成约90%时(以吸氢量计)TADB氢解脱苄对于TADB为一级反应。当反应介质为乙酸混合溶液时,常压氢气下该反应表观活化能为45.63kJ·mol-1,指前因子为106.04min-1;反应介质换为冰乙酸时反应表观活化能增大到79.90kJ·mol-1,指前因子则为109.93min-1。 相似文献
4.
一锅法合成六苄基六氮杂异伍兹烷 总被引:1,自引:0,他引:1
六苄基六氮杂异伍兹烷(HB IW)是合成CL-20的起始原料,它由苄胺和乙二醛在酸催化下缩合而得,合成路线见Scheme 1。Schem e 1美国在放大生产时HB IW粗品收率仅为55%~65%,粗品须用乙腈重结晶才能用于下一步反应,产品总收率不高。该法缺点是乙腈试剂价格较高、易挥发,对人影响较大。本课题组采用廉价无毒的酒精为溶剂,在工厂成功地进行了放大合成,粗产品收率为58%,使用丙酮重结晶。该法虽然避免使用乙腈,但丙酮溶剂也很容易挥发,特别是夏季操作很不方便。最近本课题组在试验室研究了使用95%的N,N-二甲基甲酰胺(DMF)水溶液为溶剂,待反应结… 相似文献
5.
用X-射线单晶衍射仪和超导核磁共振仪研究了六苄基六氮杂异伍兹烷(HBIW)的晶体结构和分子结构特征。分别在氘代氯仿、氘代丙酮及氘代二甲基亚砜溶液中研究了HBIW的核磁谱图特征。用一维(1H NMR,13C NMR and15N NMR)及二维(gHSQC and gHMBC)NMR技术进行了HBIW NMR信号的全归属。结果表明,HBIW的晶体属于正交晶系,空间群为Pca2(1),晶胞参数为:a=0.10724(2)nm,b=0.37001(7)nm,c=0.20476(4)nm,α=β=γ=90°,V=8.125(3)×103nm3,Z=4,Dc=1.159 g·cm-3,F(000)=3024。由高场到低场,HBIW的1H NMR化学位移依次归属为桥头CH、六元环相连的CH2、五元环相连的CH2、六元环内CH和苯环CH。13C NMR化学位移依次归属为五元环相连的CH2、六元环相连的CH2、六元环内CH、桥头CH和苯环C。五元环和六元环中N的化学位移分别为-317.0和-297.1。 相似文献
6.
乙腈法与乙醇法合成六苄基六氮杂异伍兹烷的比较 总被引:1,自引:0,他引:1
欧育湘.徐永江.刘利华.郑福平.王才.陈江涛. 《含能材料》1999,7(4):5
实验比较了乙腈法与乙醇法合成六苄基六氮杂异伍兹烷的优劣。结果表明乙腈法在产品得率、质量、反应条件等方面均优于乙醇法。但乙腈属于中等毒性化学品,使用乙腈时必须采取可靠的防护措施。 相似文献
7.
8.
9.
10.
11.
利用DSC和TG-DTG法研究了Cu(NH3)2(FOX-7)2的热分解行为。第一放热分解过程的非等温分解动力学方程为dα=dT1015.124α3/4exp(-1.429×105/RT)。Cu(NH.5℃和156.2℃。利用β3)2(FOX-7)2的自加速分解温度和热爆炸临界温度分别为145微量热法研究了Cu(NH3)2(FOX-7)2的比热容,25℃时的摩尔热容为447.3 J·mol-1·K-1。同时估算了Cu(NH3)2(FOX-7)2的绝热至爆时间大约为9.5 s。Cu(NH3)2(FOX-7)2的热稳定性远低于母体化合物FOX-7。 相似文献
12.
合成了以碳酰肼(CHZ)为配体,以叠氮离子为混合配体的配合物:Mn(CHZ)2(N3)2,并对其进行了元素分析及红外表征。利用X射线单晶分析测定了其晶体结构,晶体属于三斜晶系,P墿空间群,晶体学数据为:a=8.2217(17),b=8.7427(18),c=9.4532(19),α=86.376(4)°,β=69.104(3)°,γ=74.019(3)°,V=609.8(2)3,Dc=1.738g.cm-3,Z=2,R1=0.0316,wR2[I>2σ(I)]=0.0826,S=1.132。中心Mn(Ⅱ)离子与两个碳酰肼分子和两个叠氮离子配位形成六配位八面体结构,其中碳酰肼分子通过羰基上的氧原子和端基上的氮原子以二齿螯合配体方式配位,叠氮离子通过端基氮原子以单齿配体方式配位。用DSC、TG-DTG技术研究了标题配合物的热分解,研究结果表明,在500℃,分解的最终残渣为MnO。 相似文献
13.
合成了一种新型含能锌配合物 (FOX-7)2,并测定其晶体结构。该晶体属单斜晶系,空间群C2/c,晶胞参数为:a=0.77170(16) nm, b=1.6720(3) nm, c=1.6996(3) nm, β=94.333(3)°, V=2.1867(7) nm3, Z=4, μ=1.194 mm-1,F(000)=1112, Dc=1.628 g·cm-3, R1=0.0359 , wR2=0.0955。中心锌离子与三个乙二胺分子中的六个N原子发生配位,形成了一个畸变的八面体结构, FOX-7- 阴离子并未与中心Zn2+发生配位作用,而以外界离子的形式存在于分子结构中。用非等温DSC,TG/DTG法研究了(FOX-7)2的热分解行为,其自加速分解温度和热爆炸临界温度分别为167.1 ℃与168.8 ℃。(FOX-7)2的热稳定性低于Zn(NH3)2(FOX-7)2 。 (FOX-7)2的撞击感度约为20.6 J。 相似文献
14.
微尺寸下的压药压力与装药密度的关系是微机电系统(MEMS)引信装药密度、装药量及其爆轰特性研究与设计的基础性能参数。本实验采用容积法对微尺寸0.9mm和常规尺寸5.28mm直径的羧甲基纤维素叠氮化铅(简称羧铅)压药压力与装药密度的关系进行了研究,分别得到两种尺寸装药的拟合公式及其关系曲线,由此得出微尺寸与一般尺寸的压药压力与装药密度关系存在不同,其原因可能为冲头与管壳配合的摩擦力不同,同时得到了两种装药孔隙率和应力之间的关系。 相似文献
15.
以1,5-二氨基四唑(DAT)与硝酸银为起始原料制备了新型含能配合物[Ag_2(DAT)_4](NO_3)_2,收率86%。用元素分析和傅里叶变换红外光谱法对其结构进行了表征。培养了目标配合物的单晶。用X-射线单晶衍射仪测定了其晶体结构。用差示扫描量热法研究了其热分解行为。用Kissinger法和Ozawa法计算了其非等温反应动力学参数:活化能E_K和E_O。计算了其热爆炸临界温度T_b。用氧弹测定了其燃烧热Q_v。计算了其标准生成焓Δ_fH~Θ_(298))。测试了目标配合物的摩擦、撞击和火焰感度。结果表明,目标配合物属于单斜晶系,P21/n空间群,晶胞参数为:a=6.8109(9),b=19.654(3),c=8.4510(11),β=102.590(3)°,V=1104.1(3)~3,Z=2,Dc=2.228 g·cm~(-3),F(000)=729。对目标配合物,E_K=204.9 k J·mol~(-1),E_O=202.8 k J·mol~(-1),T_b=224.4℃,Q_v=-4177.59k J·mol~(-1),Δ_fH~Θ_(298)=258.14 k J·mol~(-1),目标配合物对撞击和火焰不敏感,对摩擦较为敏感。 相似文献
16.
17.
18.
通过K(FOX-7)·H2O和Cu(NO3)2·3H2O在1,3-丙二胺溶液中的反应制得含能配合物Cu(pn)2(FOX-7)2 (pn=1,3-丙二胺)。用差示扫描量热法(DSC)和热重/微商热重法(TG/DTG)研究了Cu(pn)2(FOX-7)2的热分解行为,采用微量热DSC法测定了比热容,也研究了绝热至爆时间和撞击感度。结果表明,第一放热分解过程的非等温动力学方程为: dα/dT=(10 17.83/β)3α 2/3exp(-1.635×105/RT)。自加速分解温度和热爆炸临界温度分别为145.6 ℃和146.74 ℃。298.15 K时摩尔比热容为653.79 J·mol-1·K-1。绝热至爆时间约为77 s,Cu(pn)2(FOX-7)2的特性落高 (H50) 是71 cm (>14 J)(RDX>7.5 J), Cu(pn)2(FOX-7)2是相对不敏感的。 相似文献
19.
以富氮羧酸类分子2,2'-(3,3'-偶氮-双(1H-1,2,4-三唑-5基))二乙酸(H2DTDA)与氢氧化锶八水合物为原料,在水热条件下制备了一种金属有机框架(MOF)结构的新型红色烟火着色剂[Sr_2(DTDA)(H_2O)_6]_n(1);采用傅里叶变换红外光谱(FT-IR)、X射线单晶衍射(XRD)、粉末X射线单晶衍射(PXRD)和元素分析等对化合物结构进行了表征;采用热重法(TG)-差示扫描量热法(DSC)、BAM标准法测试了化合物1的热性能和感度性能;设计了烟火剂配方,对化合物1应用于红色烟火着色剂的可行性进行分析。结果表明,化合物1是一种具有二维空间结构的MOF材料,其层状结构之间存在丰富的氢键作用;放大合成的水热实验同样可以得到高纯度的化合物1;撞击感度为80 J,摩擦感度 360 N;化合物1可作为红色着色剂应用于烟火剂配方中。 相似文献