首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 79 毫秒
1.
聚氨酯阻燃软质泡沫体阻燃和发泡性能的研究   总被引:1,自引:0,他引:1  
研究了阻燃剂种类和用量对聚氨酯软泡沫阻燃性能的影响,并对发泡剂、催化剂及搅拌时间等因素对软泡沫的密度和发泡高度的影响进行了探讨。  相似文献   

2.
综述了通过添加非反应型、反应型阻燃剂或表面涂覆法阻燃软质聚氨酯泡沫塑料(FPUF)领域的研究进展,包括3种阻燃方式的优势与劣势、常用阻燃剂的类别、阻燃机理及效果等,并对阻燃软质聚氨酯泡沫的研究与发展趋势进行了展望。  相似文献   

3.
EG/IFR对长玻璃纤维增强PP的协同阻燃作用   总被引:1,自引:0,他引:1  
将可膨胀石墨(EG)作为协效剂,与膨胀型阻燃剂(IFR)协同阻燃玻璃纤维增强聚丙烯(PP)复合材料,研究了EG与IFR对长玻璃纤维增强PP的协同阻燃作用。采用氧指数(OI)和热失重(TG)进行分析,结果表明:EG与IFR的协同阻燃作用存在佳协同比例;在佳协同比例下,长玻璃纤维增强PP的阻燃性和热稳定性佳。  相似文献   

4.
采用高速混合破碎机对可膨胀石墨(EG)进行处理,制得不同粒径的EG。考察了不同粒径EG填充的硬质聚氨酯泡沫塑料(RPUF)的微观形态,研究了EG对于RPUF燃烧行为的影响。结果表明:EG的粒径越小,其在聚氨酯体系中的分散就越困难;20%未经处理的EG粒子(EG0)填充的RPUF氧指数为39.5%,比未填充的RPUF氧指数提高了近一倍,而经过13min破碎的EG粒子(EG13)其氧指数仅为23.5%,与纯RPUF的氧指数在同一水平;水平垂直燃烧结果可进一步验证氧指数结果,当EGO填充量超过10%时,RPUF燃烧已经达到了V-0级,而RPUF/EG13因其阻燃性能较差只能用水平燃烧分级。由此可见,EGO可有效提高RPUF的阻燃性能,而EG13对RPUF的燃烧性能几乎没有影响;研究同时提出了不同粒径EG无卤阻燃高密度硬质聚氨酯泡沫塑料的阻燃机理。  相似文献   

5.
可膨胀石墨在硬质聚氨酯泡沫阻燃性能中的研究   总被引:13,自引:1,他引:13  
胡兴胜  郝建薇 《塑料》2004,33(1):45-47
对近年出现的一种新型膨胀阻燃剂———可膨胀石墨(EG)在硬质聚氨酯泡沫塑料(RPUF)中的阻燃性能与其它几种无卤阻燃剂作了比较。用氧指数(LOI)法研究了EG与聚磷酸铵(APP)、磷酸三乙酯(TEP)、三聚氰胺(MA)、三聚氰胺氰脲酸盐(MC)等无卤阻燃剂在RPUF中的协同阻燃作用。结果表明,EG阻燃RPUF的效果最好;并且EG与这些无卤阻燃剂之间存在着协同或反协同作用,其中EG与两种含磷阻燃剂APP和TEP的协同效果最好。  相似文献   

6.
以聚磷酸铵/膨胀石墨(APP/EG)为阻燃剂,制备了高阻燃的聚异氰酸酯-聚氨酯(PIR-PU)泡沫材料。采用极限氧指数(LOI)测试、红外光谱分析(IR)、热重分析(TGA)等方法对所制备PIR-PU泡沫材料的燃烧及热降解行为进行了研究。结果表明:APP与EG存在着良好的协同阻燃作用,APP/EG的添加可有效提高PIR-PU泡沫材料的LOI值,其中当APP/EG用量为25份、其配比为3/7时,PIR-PU泡沫材料具有最佳阻燃性能,材料的LOI值可达35.4%。APP与EG的复配使用,使PIR-PU泡沫材料的炭层较单独使用APP或EG时更为致密,有效提高了材料的热分解温度,降低了热降解速率,进而改善了材料的阻燃性能。  相似文献   

7.
李刚 《塑料科技》1998,(1):42-44,47
本文阐述了软质聚氨酯泡沫的成泡过程,及国产原料和进口原料在实际生产中的应用情况,并对其经济效益进行了分析。  相似文献   

8.
采用氧指数测定(LOI)、动态热机械分析(DMA)与热重分析(TG)等研究硼酸锌(ZB)和可膨胀石墨(PEG)复配对硬质聚氨酯泡沫阻燃性能和力学性能的影响。采用扫描电镜(SEM)观察样品的形态、pEG和ZB粒子在硬质聚氨酯泡沫中的分布情况。结果表明:硼酸锌和可膨胀石墨复配阻燃硬质聚氨酯泡沫具有一定的协同增效作用,同时可改善复合材料的压缩强度和压缩模量及储能模量。  相似文献   

9.
始于四十年代的聚氨酯泡沫塑料工业,在五十年代开发了一步法合成聚氨酯软泡工艺,此法对催化剂和泡沫稳定剂提出了较高的要求,原来可用作泡沫稳定剂的物质,如乙氧基脂肪酸,烷基磺酸盐等均不能满足要求,1954年Bailey等人合成了Si—O—C型的聚硅氧烷—聚氧化烷撑共聚物,三年后人们发现了这种共聚物对软质泡沫塑料具有优异的稳定能力。这一发现不仅使一步法连续  相似文献   

10.
采用极限氧指数、拉伸试验机和扫描电子显微镜对可膨胀石墨(EG)和甲基膦酸二甲酯(DMMP)复配阻燃聚氨酯酰亚胺泡沫塑料(PUI)的阻燃性能、表面炭层形貌及力学性能等进行了研究。结果表明,阻燃剂添加量相同时,复配阻燃体系的极限氧指数值高于EG单独阻燃PUI,PUI/EG/DMMP体系的极限氧指数值由18.6 %提高至33.4 %;EG/DMMP的复配,减少了对泡孔结构的破坏,PUI/EG/DMMP燃烧后能生成更加连续和致密的炭层;阻燃剂添加量相同时,与EG单独阻燃PUI相比,EG/DMMP复配减少了对压缩性能的损害。  相似文献   

11.
根据成泡原理,通过改变聚氨酯分子链的结构对其进行改性。加入不同的软化剂,抑制脲键刚性链段的生成或破坏聚脲硬段的结构,达到改善产品性能的目的。同时设计相应的生产配方,生产一些特殊用途的聚氨酯泡沫产品。  相似文献   

12.
以聚醚多元醇和甲苯二异氰酸酯为原料、DOPO为添加型阻燃剂,采用一步法制备阻燃软质聚氨酯泡沫(FPUF)。采用氧指数仪、烟密度仪和烟气成分分析仪测试了PU泡沫的氧指数(OI)、烟密度以及一氧化碳(CO)和二氧化碳(CO_2)的生成量,利用扫描电子显微镜(SEM)和能谱仪(EDS)分析了PU泡沫燃烧后残炭的微观形貌和元素组成。结果表明:与纯PU泡沫相比,当DOPO的用量为4%时,阻燃PU泡沫的OI由18.8%增加至21.2%,CO的生成量由0.092‰稍微增加至0.099‰,残炭率大幅度增加;残炭具有更致密的微观结构,并且含有磷元素。探讨了DOPO在PU泡沫中的阻燃机理,DOPO能够通过捕捉自由基和促进催化成炭而同时发挥气相和凝聚相阻燃作用。  相似文献   

13.
采用氢氧化镁(MH)、膨胀石墨(EG)和有机蒙脱土(OMMT)为阻燃剂制备了无卤阻燃线性低密度聚乙烯(LLDPE),研究了OMMT对LLDPE/EG/MH阻燃性能和力学性能的影响。结果表明:少量OMMT的加入,可以有效改善LLDPE/EG/MH的力学性能、阻燃性能和热稳定性。当OMMT质量分数为3.0%时,LLDPE/EG/MH/OMMT的拉伸强度和冲击强度分别为1.4 MPa和26.5 kJ/m~2;极限氧指数为35.0%,符合UL-94 V-0级;其热释放速率峰值、平均热释放速度、生烟速率和总生烟量比LLDPE/EG/MH的低。  相似文献   

14.
通过将聚乙二醇(PEG)、聚己内酯(PCL)、聚乳酸(PLA)和聚四氢呋喃醚(PTMG)等不同特性的聚合物链段引入聚氨酯(PU)基体,制备了具有不同软段结构的聚氨酯泡沫塑料(PUF)。考察了不同软段分子链结构对PUF力学性能、热性能及在土壤中降解性能的影响。结果表明,随着软段中PEG或PLA含量的增加,PUF的拉伸强度下降;不同软段结构PUF的玻璃化转变温度顺序为:PTMG1000相似文献   

15.
膨胀石墨在聚乙烯中阻燃协效作用的研究   总被引:8,自引:0,他引:8  
以膨胀石墨(EG)与聚磷酸铵(APP)复配组成膨胀型阻燃剂,应用于高密度聚乙烯(PE-HD)中。热分析表明APP/FG的添加使得PE-HD材料的热稳定性增强,降解过程变缓,剩炭率增加。氧指数(LOI)结果表明APP/EG具有良好的阻燃协同作用。扫描电镜(SEM)显示APP/EG的加入可使得PE-HD样品生成连续致密的炭层。同时力学性能研究表明APP/EG对材料的力学性能的影响比其它膨胀型阻燃剂要小。  相似文献   

16.
以可膨胀石墨(EG)与聚磷酸铵(APP)复配组成新型膨胀型阻燃剂(IFR),并将其应用于低密度聚乙烯(LDPE)中,当总添加量(质量分数)为15%,EG/APP质量比为3 1∶时,复合材料氧指数达到29%,而单独加入EG或者APP时只有27%和21%。表明二者具有良好的协同阻燃效果,并通过热失重测试(TG)、扫描电镜分析(SEM)、傅里叶红外分析(FTIR)阐明了APP和EG在固相和气相中的协同机理。  相似文献   

17.
以聚醚多元醇、亲油性二元醇、三乙烯二胺、辛酸亚锡、有机硅匀泡剂、去离子水、可膨胀石墨(EG)、三(2-氯乙基)磷酸酯(TCEP)、甲苯二异氰酸酯(TDI)为原料制备了阻燃吸油型聚氨酯泡沫,研究了EG用量对该阻燃型聚氨酯泡沫的泡孔结构、吸油性能和阻燃性能的影响。结果表明:随着EG用量的增加,聚氨酯泡沫的吸油性能呈下降趋势;EG和TCEP并用可以产生协同阻燃效应,聚氨酯泡沫的极限氧指数最高可达36%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号