首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for separation-preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions by membrane filtration has been described. The method based on the collection of analyte metal ions on a cellulose nitrate membrane filter and determination of analytes by flame atomic absorption spectrometry (FAAS). The method was optimized for several parameters including of pH, matrix effects and sample volume. The recoveries of analytes were generally in the range of 93-100%. The detection limits by 3 sigma for analyte ions were 0.02microgL(-1) for Pb(II), 0.3microgL(-1) for Cr(III), 3.1microgL(-1) for Cu(II), 7.8microgL(-1) for Ni(II) and 0.9microgL(-1) for Cd(II). The proposed method was applied to the determination of lead, chromium, copper, nickel and cadmium in tap waters and RM 8704 Buffalo River Sediment standard reference material with satisfactory results. The relative standard deviations of the determinations were below 10%.  相似文献   

2.
The sorption conditions including pH of the aqueous solution, sample volume, etc., on Celtek clay of copper(II), cadmium(II), lead(II), chromium(III), nickel(II) and cobalt(II) ions from environmental samples has been studied. The effects of electrolytes as matrix on the preconcentration were also investigated with the recoveries >95%. The 3 sigma detection limits for copper, cadmium, lead, chromium, nickel and cobalt ions were found to be 0.25, 0.32, 0.73, 0.45, 0.50 and 0.41 microg/l, respectively. The relative standard deviation was <10% for the determination of analytes. The procedure was validated by analysis of a NRCC-SLRS 4 Riverine Water, SRM 1573a Tomato leaves and IAEA 336 Lichen standard reference materials. The developed method was successively utilized for the determination of Cu(II), Cd(II), Pb(II), Cr(III), Ni(II) and Co(II) in various samples including natural waters, wheat and human hair by flame atomic absorption spectrometry (FAAS) with satisfactorily results (recoveries>95% and R.S.D.'s<10%).  相似文献   

3.
Trace amounts of Cu (II), Pb (II), and Cd (II) in a wastewater sample were preconcentrated with a novel cross‐linked magnetic chitosan modified with a new synthesised methionine‐glutaraldehyde Schiff''s base (MG‐Chi/Fe3O4) as a dispersive solid‐phase extraction (DSPE) adsorbent. The adsorbed metal ions were then eluted with a specific volume of suitable solution and determined by flame atomic absorption spectrometry (FAAS). Various parameters affecting the extraction efficiency of the metal ions were investigated and optimised, including pH, amount of adsorbent, extraction time, type and volume rate of eluent, elution time, sample volume, and effect of interfering ions. The adsorption kinetics are more consistent with the pseudo‐second order model. The results were statistically interpreted and the analytical performance of the proposed method was found to have preconcentration factors of 55, 60, and 50 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, limits of detection were 0.22, 0.24, and 0.10 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, with a relative standard deviation (1.5%‐2.8 %), and the liner range was 5–1000 for Cu(II) and Pb(II) and 2.5–1000 for Cd(II). It was concluded that this method was suitable for successful simultaneous determination of Cu(II), Pb(II), and Cd(II) in industrial wastewater samples.  相似文献   

4.
This study presents a column solid phase extraction procedure based on column biosorption of Cu(II), Zn(II) and Pb(II) ions on Penicillium digitatum immobilized on pumice stone. The analytes were determined by flame atomic absorption spectrometry (FAAS). The optimum conditions such as: pH values, amount of solid phase, elution solution and flow rate of sample solution were evaluated for the quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of copper, zinc and lead under the optimum conditions were found to be 97+/-2, 98+/-2 and 98+/-2%, respectively, at 95% confidence level. For the analytes, 50-fold preconcentration was obtained. The analytical detection limits for Cu(II), Zn(II) and Pb(II) were 1.8, 1.3 and 5.8 ng mL(-1), respectively. The proposed procedure was applied for the determination of copper, zinc and lead in dam water, waste water, spring water, parsley and carrot. The accuracy of the procedure was checked by determining copper, zinc and lead in standard reference tea samples (GBW-07605).  相似文献   

5.
The immobilized single-stranded DNA (ssIDNA) has been found to be a very effective biospecific analytical reagent when used in a newly developed bioaffinity method of the determination of heavy metals based on the amperometric DNA-based biosensor. This has been concluded from the comparative study of the complexing of heavy metals with double-stranded DNA, single-stranded DNA, and ssIDNA, using Fe(III) and Cu(II) as a model (metal/nucleotide ratio and stability constants are maximum for ssIDNA), from the study of adsorption of Fe(III), Cu(II), Pb(II), and Cd(II) on nitrocellulose membranes, containing single-stranded DNA, and from the determination of their binding constants with ssIDNA. According to these data, the chosen heavy metals can be lined up in a series of binding strengths with ssIDNA: Cu(II) > Pb(II) > Fe(III) > Cd(II). The method of the determination of heavy metals is based on biospecific preconcentration of metal ions on the biosensor followed by the destruction of DNA-metal complexes with ethylenediaminetetraacetate and voltammogram recording has been proposed. The lower detection limits are 4.0 x 10(-11), 1.0 x 10(-10), 1.0 x 10(-9), and 5.0 x 10(-9) M for Cu(II), Pb(II), Cd(II), and Fe(III), respectively. The heavy metals have been assayed in multicomponent environmental and biological systems such as natural and drinking water, milk, and blood serum samples.  相似文献   

6.
A procedure for the determination of trace amounts of Pb(II), Cu(II), Ni(II), Co(II), Cd(II) and Mn(II) is described, that combines atomic absorption spectrometry-dysprosium hydroxide coprecipitation. The influences of analytical parameters including amount of dysprosium(III), centrifugation time, sample volume, etc. were investigated on the recoveries of analyte ions. The effects of concomitant ions were also examined. The recoveries of the analyte ions were in the range of 95.00-104.00%. The detection limits corresponding to three times the standard deviation of the blank for the analytes were in the range of 14.1-25.3 microg/L. The method was applied to the determination of lead, copper, nickel, cobalt, cadmium and manganese ions in natural waters and table salts good results were obtained (relative standard deviations <10%, recoveries >95%).  相似文献   

7.
A coprecipitation procedure has been presented prior to flame atomic absorption spectrometric determination of nickel, cadmium and lead ions in environmental samples. Analyte ions were coprecipitated by using copper hydroxide precipitate. The influences of some analytical parameters like amounts of copper, sample volume, etc., on the recoveries of the analytes were investigated. The interference of other ions was negligible. Under the optimized conditions, the detection limits (3 sigma, n=15) of lead(II), nickel(II) and cadmium(II) were 7.0, 3.0 and 2.0 microg/L, respectively. The proposed method has been successfully applied for the determination of traces of Ni, Cd and Pb in environmental samples like tap water.  相似文献   

8.
A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 microg/l for iron-3.4 microg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey.  相似文献   

9.
The presence of mixed valence states of elements is supposed to be a common characteristic feature of the high-T c superconductors, based on copper oxides. Methods have been suggested for the determination of Cu(III) in the Y-Ba-Cu-O ceramics and separate determination of two oxidants: Bi(V) and Cu(III), Tl(III) and Cu(III) in the corresponding materials. Compounds of Bi(V) oxidize in the ions of Mn(II) to MnO 4 in the acidic medium. Active oxygen, bound to Cu(III) is isolated, not oxidizing Mn(II). MnO 4 is titrated then with a solution of Fe(II) sulphate. For the determination of Tl(III) the sample is dissolved in the acid, Cu(III) is reduced to Cu(II) and Tl(III) is titrated with the hydroquinone solution. The compounds of Bi(V), Tl(III) and Cu(III), having high oxidation-reduction potentials can oxidize the complex Co(II)-EDTA to Co(III)-EDTA. The colour intensity of the latter is proportional to the content of Cu(III) or to the sum of Bi(V) and Cu(III) or Tl(III) and Cu(III). The content of Cu(III) in Bi- and Tl-containing materials is determined by the difference.  相似文献   

10.
Admicellar sorbents for the removal of an iron matrix were prepared for the determination of trace impurities in high-purity iron. A 1.0-g amount of Amberlite XAD-4 (macroreticular styrene-divinylbenzene copolymer) was coated with 0.14-1.3 mmol of polyoxyethylene-type surfactants, including polyoxyethylene-4-tert-octylphenoxy ethers (Triton X series) and polyoxyethylene-4-isononylphenoxy ethers (PONPEs). The surfactant-coated XAD-4 was packed into a polypropylene column (7 mm i.d. x 50 mm high). A 5.0-cm(3) volume of sample solution was passed through the column at a flow rate of 0.5 cm(3) min(-1). Milligram amounts of iron(III) were effectively sorbed on the column from 8 mol dm(-3) hydrochloric acid solutions. Among the surfactants tested, polyoxyethylene(20)-4-isononylphenoxy ether (PONPE-20) showed the best performance: the iron leaked from the PONPE-20 column was 4 microg when 25 mg of iron(III) was introduced onto the column. Trace elements, such as Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II), Pb(II), and Bi(III), were not retained on the column and thus quantitatively recovered in the column effluent. The effective separation of trace elements from an iron matrix allowed their accurate determinations by inductively coupled plasma-mass spectrometry or graphite furnace atomic absorption spectrometry. The detection limits (3sigma blank) were in the nanogram per gram range. The proposed method was successfully applied to the determination of trace impurities in high-purity iron samples.  相似文献   

11.
A new chelating resin, covalently linked 1,6-bis(2-carboxy aldehyde phenoxy)butane with the Amberlite XAD-16 was synthesized and used for preconcentration of Cu(II) and Cd(II) prior to their determination by flame atomic absorption spectrometry (FAAS). It was characterized by elemental analyses and Fourier Transform Infrared Spectroscopy (FT-IR). Cu(II) and Cd(II) ions were quantitatively preconcentrated on minicolumn loaded with synthesised resin at pH 4.00 and 6.00, respectively. They were eluated with 5 mL of 0.5 mol L−1 HCl. Recoveries of Cu(II) and Cd(II) were found to be 100 ± 2.15, 100 ± 1.40 (N = 5), the limits of detection of Cu(II) and Cd(II) in the determination by FAAS (3s, N = 20) were found to be 0.33 and 1.19 μg L−1, respectively. The effect of foreign ions on the recovery has been investigated. The proposed method has been applied for the determination of Cu(II) and Cd(II) ions to the real samples collected from Tigris river water in Diyarbak?r and Elaz?? cities in Turkey. Standard addition method and analysis of the certified reference material (NCS-DC 73350) was employed to check the accuracy of the method.  相似文献   

12.
In this study, the use of inductively coupled plasma/optical emission spectrometry (ICP/OES) to determine multi-metal binding to three biomasses, Sphagnum peat moss, humin and humic acids is reported. All the investigations were performed under part per billion (ppb) concentrations. Batch pH profile experiments were performed using multi-metal solutions of Cd(II), Cu(II), Pb(II), Ni(II), Cr(III) and Cr(VI). The results showed that at pH 2 and 3, the metal affinity of the three biomasses exposed to the multi-metal solution that included Cr(III) presented the following order: Cu(II), Pb(II)>Ni(II)>Cr(III)>Cd(II). On the other hand, when Cr(VI) was in the heavy metal mixture, Sphagnum peat moss and humin showed the following affinity: Cu(II), Pb(II)>Ni(II)>Cr(VI)>Cd(II); however, the affinity of the humic acids was: Cu(II)>Pb(II), Cr(VI)>Ni(II)>Cd(II). The results demonstrated that pH values of 4 and 5 were the most favorable for the heavy metal binding process. At pH 5, all the metals, except for Cr(VI), were bound between 90 and 100% to the three biomasses. However, the binding capacity of humic acids decreased at pH 6 in the presence of Cr(VI). The results showed that the ICP/OES permits the determination of heavy metal binding to organic matter at ppb concentration. These results will be very useful in understanding the role of humic substances in the fate and transport of heavy metals, and thus could provide information to develop new methodologies for the removal of low concentrations of toxic heavy metals from contaminated waters.  相似文献   

13.
Multiwalled carbon nanotubes (MWNTs) were used as solid phase extractor for Cu(II), Cd(II), Pb(II), Zn(II), Ni(II) and Co(II) ions as ammonium pyrrolidine dithiocarbamate (APDC) chelates, in the present study. The influences of the experimental parameters including pH of the solutions, amounts of MWNTs, amounts of APDC, eluent type and volume, sample volume etc. on the quantitative recoveries of analyte ions were investigated. The effects of matrix ions of natural waters and some transition metals on the recoveries of the analyte ions were also examined in the model solutions. Tests of addition/recovery for analyte ions in real samples were performed with satisfactorily results. The detection limits (3s) for the analyte ions were in the range of 0.30-0.60 microg l(-1). The concentrations of analytes in standard reference materials (NIST RM 8418 Wheat gluten, LGC 6010 Hard drinking water and NIST SRM 1515 Apple leaves) pretreated by the presented method were measured with FAAS and the analytical values were well agreed with the certified values and the reference values without the interference of major components. The presented method has been applied to the determination of analytes in food and environmental samples with satisfactory results.  相似文献   

14.
The biosorption behavior of the solid waste Chinese herb Pang Da Hai (seeds of Sterculia lychnophera Hance) was studied as a sorbent for trace lead and cadmium. The solid waste Chinese herb Pang Da Hai has good sorption and desorption properties for Pb and Cd. The sorbed waste Chinese herb Pang Da Hai was both easily eluted with 0.1 mol l(-1) HNO(3) and easily digested with concentrated HNO(3). The extent of adsorption depends on pH, metal concentration, substrate concentration and the presence of interfering ions. The adsorption capacities were found to be 27.1 and 17.5 mg g(-1) for Pb and Cd. The relative standard deviation of the metal uptake experiment was found to be less than 10% for Pb(II) and Cd(II) using 100 microg l(-1) of metal ions and 20 mg substrate. Based on above, an ecofriend and low cost method for Cd and Pb preconcentration and determination with flame atomic absorption spectrophotometry was developed. The method was validated by the analysis of a standard reference material (GBW 08301). The results agree with those quoted by manufactures. It was used for 90-fold preconcentration of Cd and Pb from tap water and river water samples followed by flame atomic absorption spectroscopic (FAAS) determination with satisfactory results.  相似文献   

15.
The synthesis of a novel fluoroionophore, 5-p-[[4-(10',15',20'-triphenyl-5'-porphinato) phenyloxyl]-1-butyloxyl]phenyl-10,15,20-triphenylporphine (DTPP), and its application for preparation of a Hg(II)-sensitive optical fiber chemical sensor are described. The response of the sensor is based on the fluorescence quenching of DTPP by coordination with Hg(II). The porphyrin dimer-based sensor shows a linear response toward Hg(II) in the concentration range 5.2 x 10(-7)-3.1 x 10(-4) mol x L(-1), with a working pH range from 2.4 to 8.0. The sensor shows excellent selectivity for Hg(II) over transition metal cations including Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II), and Fe(III). As a sensing agent, the porphyrin dimer shows obviously better fluorescence response characteristics toward Hg(II) compared to porphyrin monomer or metalloporphyrin. The effect of the composition of the sensor membrane was studied, and the experimental conditions were optimized. The sensor has been used for determination of Hg(II) in water samples.  相似文献   

16.

Fe-Al-Mn nanocomposite has been synthesized by impregnating MnO2 with Fe and Al nitrate aqueous solution for preconcentration and determination of Pb (II), Cd (II) and U (VI) ions from aqueous solution. Fourier Transform Infrared spectroscopy (FTIR), X-Ray-diffraction (XRD) and Scanning electron microscopy coupled with energy dispersive&nbsp;X-ray detector (SEM–EDX) were employed to characterize the as-synthesized nanocomposite. The XRD result indicates that the as-synthesized nanocomposite had a crystal size with rhombohedral structure and size of 30.81 nm. FTIR results confirmed the presence of hydroxyl group and Metal–Oxygen vibration in the adsorbent. A sensitive and simple solid-phase preconcentration procedure for the determination of trace amounts of Pb(II) and Cd(II) ions by FAAS and U(VI) ions by Uv–Vis was developed. The adsorption isotherm was formally described by both Langmuir and Freundlich equation with a maximum adsorption capacity of 12.5 (Pb), 12.8(Cd) and 14.9(U) mg g?1 respectively with preconcentration factor of 15. The limits of detection were 0.09, 0.05 and 0.0097 mg L?1 and the relative standard deviation for ten replicate measurements were 2.47, 0.979 and 2.04%, for Pb (II), Cd(II) and U(VI) ions, respectively. The recovery of Pb(II), Cd(II) and U(VI) ions were found to be 92.7, 91.3, and 81.76%, respectively. On the basis of these findings, the as-synthesized Fe-Al-Mn nanocomposite was successfully applied as a solid phase extraction for preconcentration and determination of Pb(II), Cd(II) and U(VI) ions in aqueous solution.

  相似文献   

17.
A new tris(2-aminoethyl) amine (TREN) functionalized silica gel (SG-TREN) was prepared and investigated for selective solid-phase extraction (SPE) of trace Cr(III), Cd(II) and Pb(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Identification of the surface modification was characterized and performed on the basis of FT-IR. The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III), Cd(II) and Pb(II) onto the SG-TREN were 32.72, 36.42 and 64.61 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 5 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3sigma) of this method for Cr(III), Cd(II) and Pb(II) were 0.61, 0.14 and 0.55 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=11). The application of this modified silica gel to preconcentration trace Cr(III), Cd(II) and Pb(II) of two water samples gave high accurate and precise results.  相似文献   

18.
Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.  相似文献   

19.
Ulmus carpinifolia and Fraxinus excelsior tree leaves, which are in great supply in Iran, were evaluated for removal of Pb(II), Cd(II) and Cu(II) from aqueous solution. Maximum biosorption capacities for U. carpinifolia and F. excelsior were measured as 201.1, 172.0 mg/g for Pb(II), 80.0, 67.2 mg/g for Cd(II) and 69.5, 33.1 mg/g for Cu(II), respectively. For both sorbents the most effective pH range was found to be 2-5 for Pb(II), 3-5 for Cd(II) and 4-5 for Cu(II). Metal ion biosorption increased as the ratio of metal solution to the biomass quantity decreased. Conversely, biosorption/g biosorbent decreased as the quantity of biomass increased. The biosorption of metal ions increased as the initial metal concentration increased. Biosorption capacities of metal ions were in the following order: Pb(II)>Cd(II)>Cu(II). The equilibrium data for Pb(II) and Cu(II) best fit the Langmuir adsorption isotherm model. Kinetic studies showed that the biosorption rates could be described by a second-order expression. Both the sorbents could be regenerated using 0.2 M HCl during repeated biosorption-desorption cycles with no loss in the efficiency of the Cu(II) removal observed. Biosorption of Pb(II), Cd(II) and Cu(II) was investigated in the presence of Na, K, Mg and Ca ions. The results from these studies show a novel way of using U. carpinifolia and F. excelsior tree leaves to remove Pb(II), Cd(II) and Cu(II) from metal-polluted waters.  相似文献   

20.
Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号