首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we develop self-assembling robot systems composed of active modular robots and passive bars. The target structure is modeled as a dynamic graph. We present two provably correct algorithms for creating the structure. A decentralized optimal algorithm for the navigation of multiple modular robots on a partial truss structure is used to guide the robots to their location on the target structure. A decentralized algorithm for scheduling the transportation and placement of truss elements is used to coordinate the creation of the target structure. Both algorithms rely on locally optimal matching. The truss self-assembly algorithm has quadratic competitive ratio for static as well as dynamic graph representation. We show simulation results and results for experiments with two 3DOF robots and passive bars that can create and control a 6DOF manipulation.  相似文献   

2.
基于行为的多机器人任意队形的控制   总被引:4,自引:0,他引:4  
张磊  秦元庆  孙德宝  肖俊 《控制工程》2005,12(2):174-176
针对多机器人队形优化控制任务,提出一种快速收敛的机器人任意队形的控制算法。各机器人在奔向目标的过程中以队形的几何中心为参考点,自主地确定队形向量。在保持队形的过程中,采用动态死区法,通过对各个区域大小的控制达到对机器人速度的控制,维持规定队形。采用反向避碰、切线避障,根据各机器人间的位置,引入整体队形向量约束机器人的方向,达到机器人整体队形的方向与机器人运动方向一致。实验结果表明该算法可以快速、有效地完成各种编队任务。  相似文献   

3.
模块化机器人拓扑重构规划研究   总被引:1,自引:0,他引:1  
模块化可重构机器人由若干个相同的机器人模块组合装配而成,能够重构成不同的几何形态和结构,从而适应不同的作业任务要求。本论文主要对树状拓扑结构的模块化机器人的重构规划问题进行了研究,定义了构型重构的基本概念,提出了分支重构规划算法。这类模块化可重构机器人可以用树状拓扑结构图来描述。机器人的拓扑结构从自由树转化为有根树,然后分解为若干个分支结构,并按一定顺序排列,通过对各个分支结构的逐步比较和操作,完成重构过程。最后选定模块数目,进行了重构规划过程的仿真计算。结果表明,文中所述算法对于树状拓扑结构的模块化机器人的重构规划问题是有效的。  相似文献   

4.
为了实现在多移动机器人和多窄通道的复杂动态环境中机器人的节能运动规划,提出异构多目标差分-动态窗口法(heterogeneous multi-objective differential evolution-dynamic window algorithm,HMODE-DWA).首先,建立行驶时间、执行器作用力和平滑度的3目标优化模型,设计具有碰撞约束的异构多目标差分进化算法来获得3个目标函数的最优解,进而在已知的静态环境中获得帕累托前沿,利用平均隶属度函数获得起点与终点间最优的全局路径;其次,定义基于环境缓冲区域的模糊动态窗口法使机器人完成动态复杂环境中避障,利用所提出的HMODE-DWA算法动态避障的同时实现节能规划.仿真和实验结果表明,所提出的混合路径规划控制策略能够有效降低移动机器人动态避障过程中的能耗.  相似文献   

5.
模块化可重构机器人由于其构型多变,运动形式丰富等特点,可以在非结构化环境或未知环境中执行任务,在最近几年迅速成为机器人研究领域的前沿和热点. 模块化可重构机器人在军事、医疗、教育等众多工程领域具有广泛的应用前景,其典型代表包括仿生多足模块化机器人、模块化可重构机械臂、晶格式模块化机器人等. 模块化可重构机器人丰富的构型设计、多样的连接特征、不断拓展的应用范围,给动力学建模与控制带来了很多挑战和机遇. 本文首先阐述了模块化可重构机器人的研究背景和意义,并概述了其构型分类与设计、构型描述与运动学建模方法.随后,本文系统回顾了模块化可重构机器人动力学研究中相关问题的最新进展,包括:(1)系统整体动力学建模;(2)结合面以及对接机构动力学建模;(3)基于动力学模型的控制方法. 本文最后提出了模块化可重构机器人动力学研究中若干值得关注的问题.  相似文献   

6.
目标搜索是多机器人领域的一个挑战.本文针对栅格地图中多机器人目标搜索算法进行研究.首先,利用Dempster-Shafer证据理论将声纳传感器获取的环境信息进行融合,构建搜索环境的栅格地图.然后,基于栅格地图建立生物启发神经网络用于表示动态的环境.在生物启发神经网络中,目标通过神经元的活性值全局的吸引机器人.同时,障碍物通过神经元活性值局部的排斥机器人,避免与其相撞.最后,机器人根据梯度递减原则自动的规划出搜索路径.仿真和实验结果显示本文提及的算法能够实现栅格地图中静态目标和动态目标的搜索.与其他搜索算法比较,本文所提及的目标搜索算法有更高的效率和适用性.  相似文献   

7.
在拥挤环境中,由于障碍物的边界形状比较复杂,需要使用广义Voronoi图表示空间环境。且在多移动机器人的运动规划过程中,需要协调多个机器人的运动,必须得到Voronoi图通道的宽度。为此提出了一种计算拥挤障碍物环境中生成的广义Voronoi图及其通道宽度的算法。并在生成的Voronoi图上利用A*算法对多个机器人进行路径规划,并利用分布式方法协调多个机器人运动。对协调两个机器人运动的过程进行了仿真,仿真结果表明利用提出的算法生成的具有通道宽度信息的Voronoi图能够满足多移动机器人运动规划的需要。  相似文献   

8.
王洪斌  尹鹏衡  郑维  王红  左佳铄 《机器人》2020,42(3):346-353
提出了一种改进的A*算法与动态窗口法相结合的混合算法,以解决移动机器人在多目标复杂环境中的路径规划问题.首要,为了提升算法的运行效率,实现单次规划的路径可通过多个目标点,同时提升路径平滑处理的灵活性并满足移动机器人非完整约束条件,本文利用目标成本函数对所有目标进行优先级判定,进而利用改进的A*算法规划一条经过多个目标点的最优路径,同时采用自适应圆弧优化算法与加权障碍物步长调节算法,有效地将路径长度缩短5%,转折角总度数降低26.62%.其次,为实现移动机器人在动态复杂环境中局部避障并追击动态目标点.提出将改进动态窗口算法与全局路径规划信息相结合的在线路径规划法,采用预瞄偏差角追踪法成功捕捉移动目标点,并提升了路径规划效率.最后,对所提方法进行仿真实验,结果表明该方法能够在复杂动态环境中更有效地实现路径规划.  相似文献   

9.
针对多移动机器人在停车避撞时能耗优化的问题,提出能耗优化下基于滚动时间窗和二叉树先序遍历的多移动机器人动态避撞(TW & BT)融合算法。基于改进A*算法求得能耗约束下的最优初始路径。依据滚动时间窗和二叉树先序遍历协同机制,以初始路径中移动机器人碰撞为触发事件,将整个作业时间轴分解为多个时间窗;在每个时间窗,以停车避撞时产生能耗最小为目标,基于二叉树先序遍历的算法求解最优避撞决策。仿真实验结果表明,一方面TW & BT融合算法具有较高的鲁棒性;另一方面对比基于动态优先级的冲突消解策略(DPS)方法,在相近的计算时间内,TW & BT融合算法实现避撞时产生能耗降低达33.1%。  相似文献   

10.
In a multi-robotic system, robots interact with each other in a dynamically changing environment. The robots need to be intelligent both at the individual and group levels. In this paper, the evolution of a fuzzy behavior-based architecture is discussed. The behavior-based architecture decomposes the complicated interactions of multiple robots into modular behaviors at different complexity levels. The fuzzy logic approach brings in human-like reasoning to the behavior construction, selection and coordination. Various behaviors in the fuzzy behavior-based architecture are evolved by genetic algorithm (GA). At the lowest level of the architecture hierarchy, the evolved fuzzy controllers enhanced the smoothness and accuracy of the primitive robot actions. At a higher level, the individual robot behaviors have become more skillful after the evolution. At the topmost level, the evolved group behaviors have resulted in aggressive competition strategy. The simulation and real-world experimentation on a robot-soccer system justify the effectiveness of the approach.  相似文献   

11.
Heterogeneous Teams of Modular Robots for Mapping and Exploration   总被引:3,自引:2,他引:1  
In this article, we present the design of a team of heterogeneous, centimeter-scale robots that collaborate to map and explore unknown environments. The robots, called Millibots, are configured from modular components that include sonar and IR sensors, camera, communication, computation, and mobility modules. Robots with different configurations use their special capabilities collaboratively to accomplish a given task. For mapping and exploration with multiple robots, it is critical to know the relative positions of each robot with respect to the others. We have developed a novel localization system that uses sonar-based distance measurements to determine the positions of all the robots in the group. With their positions known, we use an occupancy grid Bayesian mapping algorithm to combine the sensor data from multiple robots with different sensing modalities. Finally, we present the results of several mapping experiments conducted by a user-guided team of five robots operating in a room containing multiple obstacles.  相似文献   

12.
Decentralized control of self-reconfiguring modular robots requires reliable inter-module communication. Communication links must tolerate module misalignment and implement the neighbor-to-neighbor communication model. In this paper, we propose a wireless system based on multiple radios per module that addresses these challenges. Although the capacity of general wireless mesh networks is known to rapidly decrease with network size, we show that a multi-radio single-channel system has constant capacity in square and cubic lattices of infinite size. We validate the performance of such a system in a testbed with 15 unactuated modules using synthetic data and a benchmark decentralized algorithm. We also demonstrate automatic neighbor detection. The main benefits of radio communication in modular robots are tolerance to module misalignment and to eliminate the tight coupling between communication and mechanical design necessitated by typical existing infrared and wired systems. Our results are the first to establish the feasibility of radio as the primary means of inter-module communication in modular robots.  相似文献   

13.
A new approach to coordination of multiple mobile robots is presented in this paper. The approach relies on the notion of constraint forces which are used in the development of the dynamics of a system of constrained particles with inertia. A familiar class of dynamic, nonholonomic robots are considered. The goal is to design a distributed coordination control algorithm for each robot in the group to achieve, and maintain, a particular formation while ensuring navigation of the group. The theory of constraint forces is used to generate a stable control algorithm for each mobile robot that will achieve, and maintain, a given formation. The advantage of the proposed method is that the formation keeping forces (constraint forces) cancel only those applied forces which act against the constraints. Another feature of the proposed distributed control algorithm is that it allows to add/remove other mobile robots into/from the formation gracefully with simple modifications of the control input. Further, the algorithm is scalable. To corroborate the theoretical approach, simulation results on a group of six robots are shown and discussed.  相似文献   

14.
针对移动机器人对动态目标的追踪和对拦截型障碍物的避障问题,将势场法进行改进,提出了辅助斥力环方法,改变了传统势场法中斥力的作用方式和机器人的避障策略,使其在动态环境下处理避障问题更加灵活有效.仿真研究验证了此方法的有效性.  相似文献   

15.
In this paper, a new method for robot navigation in dynamic environments, called the reciprocal orientation algorithm, is introduced. This algorithm deals with the case in which each robot moves without direct communication with the other robots. The algorithm suggested in this paper uses the concept of reciprocal orientation which guarantees both smooth and collision-free robot trajectories. The algorithm is implemented in several simulation scenarios, some of them involving tens of robots. The deadlock problem, which occurs between two robots, has been solved by using an adequate deadlock resolution algorithm.  相似文献   

16.
A dynamic role assignment algorithm is proposed in the paper for formation control of multiple mobile robots. The goal of the algorithm is to reassign a role for each robot automatically during a formation is forming or switching. Many formation control systems have been successfully implemented and validated by supporting experimental results. Nevertheless, this research aims at providing an efficient algorithm of role assignment for a class of formation control systems employing the concept of combinational optimization problems. Specifically, by exploring spatial relationship between robots and information of obstacles surrounding the robots, a character cost function is found to represent the degree of difficulty for a robot been assigned a specified role in a formation. Instead of using complex cost minimization procedure, a solution is provided by calculating the largest value of character set fitness, and a new formation is selected for robots accordingly. The developed algorithm is applied to the formation control of a group omni-directional driven robots. Simulation and experimentation are performed with real platform to verify the proposed algorithm and the results show that the performance of the proposed dynamic role assignment algorithm is efficient for robot formation control.  相似文献   

17.
Reconfigurable robotic systems can be adapted to different tasks or environments by reorganizing their mechanical configurations. Such systems have many redundant degrees of freedom in order to meet the combined demands of strength, rigidity, workspace kinematics, reconfigurability, and fault tolerance. In order to implement these new generations of robotic system, new approaches must be considered for design, analysis, and control. This paper presents an efficient distributed computational scheme which computes the kinematics, dynamics, redundancy resolution, and control inputs for real-time application to the control of the Tetrobot modular reconfigurable robots. The entire system is decomposed into subsystems based on a modular approach and Newton's equations of motion are derived and implemented using a recursive propagation algorithm. Two different dynamic resolution of redundancy schemes, the centralized Jacobian method and the distributed virtual force method, are proposed to optimize the actuating forces. Finally, distributed dynamic control algorithms provide an efficient modular implementation of the control architecture for a large family of configurations.  相似文献   

18.
李国栋  陈维南 《机器人》1997,19(4):290-293
给出了一新的基于团队一致法的多传感器位置数据融合方法,该方法按传感器队中的每个成员的测量不确定性,构造团队期望效用函数(或密度),并基于该期望效用函数求得位置参数估计,其优点是可消除失效传感器和测量值为野值的传感器的影响,本文给出了仿真结果。  相似文献   

19.
On Modular Design of Field Robotic Systems   总被引:1,自引:1,他引:0  
Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task.This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels.The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search.The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.  相似文献   

20.
This paper aims to propose a novel design approach for on-line path planning of the multiple mobile robots system with free collision. Based on the artificial bee colony (ABC) algorithm, we propose an efficient artificial bee colony (EABC) algorithm for solving the on-line path planning of multiple mobile robots by choosing the proper objective function for target, obstacles, and robots collision avoidance. The proposed EABC algorithm enhances the performance by using elite individuals for preserving good evolution, the solution sharing provides a proper direction for searching, the instant update strategy provides the newest information of solution. By the proposed approach, the next positions of each robot are designed. Thus, the mobiles robots can travel to the designed targets without collision. Finally, simulation results of illustration examples are introduced to show the effectiveness and performance of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号