共查询到10条相似文献,搜索用时 500 毫秒
1.
2.
3.
Genetic algorithms are adaptive methods based on natural evolution that may be used for search and optimization problems. They process a population of search space solutions with three operations: selection, crossover, and mutation. Under their initial formulation, the search space solutions are coded using the binary alphabet, however other coding types have been taken into account for the representation issue, such as real coding. The real-coding approach seems particularly natural when tackling optimization problems of parameters with variables in continuous domains.A problem in the use of genetic algorithms is premature convergence, a premature stagnation of the search caused by the lack of population diversity. The mutation operator is the one responsible for the generation of diversity and therefore may be considered to be an important element in solving this problem. For the case of working under real coding, a solution involves the control, throughout the run, of the strength in which real genes are mutated, i.e., the step size.This paper presents TRAMSS, a Two-loop Real-coded genetic algorithm with Adaptive control of Mutation Step Sizes. It adjusts the step size of a mutation operator applied during the inner loop, for producing efficient local tuning. It also controls the step size of a mutation operator used by a restart operator performed in the outer loop, for reinitializing the population in order to ensure that different promising search zones are focused by the inner loop throughout the run. Experimental results show that the proposal consistently outperforms other mechanisms presented for controlling mutation step sizes, offering two main advantages simultaneously, better reliability and accuracy. 相似文献
4.
基于寿命的变种群模糊遗传算法 总被引:4,自引:0,他引:4
针对简单遗传算法存在早收敛和在进化后期搜索效率较低的缺点,提出了一种种群数变化的模糊遗传算法.该算法对进化种群数进行宏观调控的同时,再用个体寿命限制个体的生存期,实现对种群数的微观调控.并采用模糊控制器控制交叉率,使其能够根据进化的实际情况自动调整.实验数据表明这种方法能够有效防止早收敛,大大改善遗传算法收敛性能. 相似文献
5.
遗传算法的一个调节算子研究 总被引:9,自引:0,他引:9
虽然遗传算法在许多领域获得了成功应用,但它本身存在不成熟的过早收敛问题是影响其发展的中的课题,本文通过对遗传算法要理的分析和认识,给出了遗传算法早熟现象产生的原因是模式缺少,并提出了一个在遗传算法中在于模式抽取和模式补偿的调节算子以解决早期现象,最后给出了运算实例证明该算子是有效的。 相似文献
6.
遗传算法及其研究进展 总被引:13,自引:0,他引:13
姚文俊 《计算机与数字工程》2004,32(4):41-43
叙述标准遗传算法的基本原理,讨论遗传算法在解决各种复杂问题时存在的缺陷,并总结了相应的解决方案。 相似文献
7.
8.
9.
10.
传统遗传算法容易陷入局部最优解,本文借鉴美术中“素描”的思想,对传统的遗传算法进行了改进,提出了基于素描的新型遗传算法.该算法模拟人的素描行为,构造参数控制下的选择算子,再通过参数的调节来选择个体,并依据最优个体对选择算子进行修正,以达到动态调整群体进化过程中的种群多样性和收敛速度之间的矛盾,从而有效地避免了传统遗传算法中早熟现象,显著地提高了GA对全局最优解的搜索能力和收敛速度.这将使GA在众多实际的优化问题上将具有更广泛的应用前景.仿真结果表明,该算法正确有效,且性能优于现有的其它方法. 相似文献