首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NOx) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NOx increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.  相似文献   

2.
Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from diesel engines. Under some conditions, however, biodiesel produced from certain feedstocks has been shown to cause an increase in nitrogen oxides (NOx). This is of special concern in urban areas that are subject to strict environmental regulations. Although soy-based biodiesel may increase the emission of nitrogen oxides, it is the most easily accessible in North America. We investigated two routes to reformulate soy-based biodiesel in an effort to reduce nitrogen oxide emissions. In one of these, soy-oil methyl esters were modified by conversion of a proportion of the cis bonds in the fatty acid chains of its methyl esters to their trans isomers. In the other approach, polyol derivatives of soybean oil were transesterified to form soy methyl polyol fatty acid esters. The NOx emissions of these modified biodiesels were then examined, using a Yanmar L100 single cylinder, four stroke, naturally aspirated, air cooled, direct injection diesel engine. Using either isomerized methyl oleate or isomerized soy biodiesel, at 20% blend level in petroleum diesel (‘B20’), nitrogen oxide emissions were elevated by between 1.5 and 3 percentage points relative to the combustion of a B20 blend of commercial biodiesel. Nitrogen oxide emissions were reduced in proportion to blend level during the combustion of polyol biodiesel, with a 20% blend in petrodiesel resulting in a reduction of about 4.5 percentage points relative to the emissions of a comparable blend of commercial soy biodiesel.  相似文献   

3.
K. Varatharajan  M. Cheralathan 《Fuel》2011,90(8):2721-2725
Biodiesel offers cleaner combustion over conventional diesel fuel including reduced particulate matter, carbon monoxide and unburned hydrocarbon emissions. However, several studies point to slight increase in NOx emissions (about 10%) for biodiesel fuel compared with conventional diesel fuel. Use of antioxidant additives is one of the most cost-effective ways to mitigate the formation of prompt NOx. In this study, the effect of antioxidant additives on NOx emissions in a jatropha methyl ester fuelled direct injection diesel engine have been investigated experimentally and compared. A survey of literature regarding the causes of biodiesel NOx effect and control strategies is presented. The antioxidant additives L-ascorbic acid, α tocopherol acetate, butylated hydroxytoluene, p-phenylenediamine and ethylenediamine were tested on computerised Kirloskar-make 4 stroke water cooled single cylinder diesel engine of 4.4 kW rated power. Results showed that antioxidants considered in the present study are effective in controlling the NOx emissions of biodiesel fuelled diesel engines. A 0.025%-m concentration of p-phenylenediamine additive was optimal as NOx levels were substantially reduced in the whole load range in comparison with neat biodiesel. However, hydrocarbon and CO emissions were found to have increased by the addition of antioxidants.  相似文献   

4.
Tie Li  Masaru Suzuki  Hideyuki Ogawa 《Fuel》2009,88(10):2017-354
The effects of ethyl tert-butyl ether (ETBE) addition to diesel fuel on the characteristics of combustion and exhaust emissions of a common rail direct injection diesel engine with high rates of cooled exhaust gas recirculation (EGR) were investigated. Test fuels were prepared by blending 0, 10, 20, 30 and 40 vol% ETBE to a commercial diesel fuel. Increasing ETBE fraction in the fuel helps to suppress the smoke emission increasing with EGR, but a too high fraction of ETBE leads to misfiring at higher EGR rates. While the combustion noise and NOx emissions increase with increases in ETBE fraction at relatively low EGR rates, they can be suppressed to low levels by increasing EGR. Though there are no significant increases in THC and CO emissions due to ETBE addition to diesel fuel in a wide range of EGR rates, the ETBE blended fuel results in higher aldehyde emissions than the pure diesel fuel at relatively low EGR rates. With the 30% ETBE blended fuel, the operating load range of smokeless, ultra-low NOx (<0.5 g/kWi h), and efficient diesel combustion with high rates of cooled EGR is extended to higher loads than with the pure diesel fuel.  相似文献   

5.
Engine performance and emission comparisons were made between the use of soy, Canola and yellow grease derived B100 biodiesel fuels and an ultra-low sulphur diesel fuel in the high load engine operating conditions. Compared to the diesel fuel engine-out emissions of nitrogen oxides (NOx), a high-cetane number (CN) biodiesel fuel produced comparable NOx while the biodiesel with a CN similar to the diesel fuel produced relatively higher NOx at a fixed start of injection. The soot, carbon monoxide and un-burnt hydrocarbon emissions were generally lower for the biodiesel-fuelled engine. Exhaust gas recirculation (EGR) was then extensively applied to initiate low temperature combustion (LTC) mode at medium and low load conditions. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. Simultaneous reduction of NOx and soot was achieved when the ignition delay was prolonged by more than 50% from the case with 0% EGR at low load conditions. Furthermore, a preliminary ignition delay correlation under the influence of EGR at steady-state conditions was developed. The correlation considered the fuel CN and oxygen concentrations in the intake air and fuel. The research intends to achieve simultaneous reductions of NOx and soot emissions in modern production diesel engines when biodiesel is applied.  相似文献   

6.
C.M. NamB.M. Gibbs 《Fuel》2002,81(10):1359-1367
Diesel DeNOx experiments have been conducted using the selective noncatalytic ‘thermal DeNOx’ process in a diesel fuelled combustion-driven flow reactor which simulated a single cylinder (966 cm3) and head equipped with a water-cooling jacket and an exhaust pipe. NH3 was directly injected into the cylinder to reduce NOx emissions. A wide range of air/fuel ratios (A/F=20-40) was selected for NOx reduction where an initial NOx of 530 ppm was usually maintained with a molar ratio (β=NH3/NOx) of 1.5.The results indicate that a 34% NOx reduction can be achieved from the cylinder injection in the temperature range, 1100-1350 K. Most of the NOx reduction occurs within the cylinder and head section (residence time<40 ms), since temperatures in the exhaust are too low for additional NOx reduction. Under large gas quenching rates, increasing β values (e.g. 4.0) substantially increase the NOx reduction up to 60%, which is comparable with those achieved under isothermal conditions. Experimental findings are analysed by chemical kinetics using the Miller and Bowman mechanism including both N/H/O species and CO/hydrocarbon reactions to account for CO/UHC oxidation effects, based on practical nonisothermal conditions. Comparisons of the kinetic calculations with the experimental data are given as regards temperature characteristics, residence time and molar ratio. In addition, the effects of CO/UHC and branching ratio (α=k1/(k1+k2)) for the reaction NH2+NO=products are discussed in terms of NO reduction features, together with practical implications.  相似文献   

7.
The effects of combustion driven acoustic oscillations in carbon monoxide and nitrogen oxides emission rates of a combustor operated with liquefied petroleum gas (LPG) were investigated. Because the fuel does not contain nitrogen, tests were also conducted with ammonia injected in the fuel, in order to study the formation of fuel NOx. The main conclusions were: (a) the pulsating combustion process is more efficient than the non-pulsating one and (b) the pulsating combustion process generates higher rates of NOx, with and without ammonia injection, as shown by CO and NO concentrations as function of the O2 concentration. An increase in the LPG flow rate, keeping constant the air to fuel ratio, increased the acoustic pressure amplitude and the frequency of oscillation. The injection of ammonia had no influence on either pressure amplitude or frequency.  相似文献   

8.
This paper reviews the properties and application of di-methyl ether (DME) as a candidate fuel for compression-ignition engines. DME is produced by the conversion of various feedstock such as natural gas, coal, oil residues and bio-mass. To determine the technical feasibility of DME, the review compares its key properties with those of diesel fuel that are relevant to this application. DME’s diesel engine-compatible properties are its high cetane number and low auto-ignition temperature. In addition, its simple chemical structure and high oxygen content result in soot-free combustion in engines. Fuel injection of DME can be achieved through both conventional mechanical and current common-rail systems but requires slight modification of the standard system to prevent corrosion and overcome low lubricity. The spray characteristics of DME enable its application to compression-ignition engines despite some differences in its properties such as easier evaporation and lower density. Overall, the low particulate matter production of DME provides adequate justification for its consideration as a candidate fuel in compression-ignition engines. Recent research and development shows comparable output performance to a diesel fuel led engine but with lower particulate emissions. NOx emissions from DME-fuelled engines can meet future regulations with high exhaust gas recirculation in combination with a lean NOx trap. Although more development work has focused on medium or heavy-duty engines, this paper provides a comprehensive review of the technical feasibility of DME as a candidate fuel for environmentally-friendly compression-ignition engines independent of size or application.  相似文献   

9.
In this study, the effect of injection timing and EGR rate on the combustion and emissions of a Ford Lion V6 split injection strategy direct injection diesel engine has been experimentally investigated by using neat biodiesel produced from soybean oil. The results showed that, with the increasing of EGR rate, the brake specific fuel combustion (BSFC) and soot emission were slightly increased, and nitrogen oxide (NOx) emission was evidently decreased. Under higher EGR rate, the peak pressure was slightly lower, and the peak heat release rate kept almost identical at lower engine load, and was higher at higher engine load. With the main injection timing retarded, BSFC was slightly increased, NOx emission was evidently decreased, and soot emission hardly varied. The second peak pressure was evidently decreased and the heat release rate was slightly increased.  相似文献   

10.
NOx and SOx emissions of air-staged combustion were investigated in a 1 MW tangentially-fired furnace combusting a high sulfur self-retention coal. Two variables including the air stoichiometric ratio of primary combustion zone and the relative location of over-fire air (OFA) injection ports were studied. These results suggest that NOx reduction efficiency monotonically increases with increasing the relative location of OFA injection ports, and the lowest NOx emissions are achieved when the air stoichiometric ratio of primary combustion zone is 0.85. In the meantime, SOx emissions can be effectively reduced when the air stoichiometric ratio of primary combustion zone is 0.85 or 0.95, and SOx emissions monotonically decrease with increasing the relative location of OFA injection ports.  相似文献   

11.
In this work, the effects of a standard ultra-low sulphur diesel (ULSD) fuel and a new, ultra-clean synthetic GTL (gas-to-liquid) fuel on the performance, combustion and emissions of a single-cylinder, direct injection, diesel engine were studied under different operating conditions with addition of simulated reformer product gas, referred to as reformed EGR (REGR). For this purpose various levels of REGR of two different compositions were tested. Tests with standard EGR were also carried out for comparison. Experiments were performed at four steady state operating conditions and the brake thermal efficiency, combustion process and engine emission data are presented and discussed. In general, GTL fuel resulted in a higher brake thermal efficiency compared to ULSD but the differences depended on the engine condition and EGR/REGR level and composition. The combustion pattern was significantly modified when the REGR level was increased. Although the extent of the effects of REGR on emissions depended on the engine load, it can be generally concluded that an optimal combination of GTL and REGR significantly improved both NOx and smoke emissions. In some cases, NOx and smoke emission reductions of 75% and 60%, respectively, were achieved compared to operation with ULSD without REGR. This offers a great potential for engine manufacturers to meet the requirements of future emission regulations.  相似文献   

12.
This paper presents the results of an experimental study on a 300-MW boiler unit fired with Thai lignite. Effects of operating conditions (excess air ratio and unit load) and fuel quality on the boiler heat losses and thermal efficiency as well as on the gaseous (CO2, CO, NOx and SO2) and particulate matter (PM) emissions from the boiler unit are discussed. The boiler thermal efficiency was weakly affected by the excess air ratio, unit load and fuel lower heating value, varying from 90.3 to 92.3% for wide ranges of the above variables. In all the tests, the NOx, SO2 and PM emissions were below the national emission standards for these pollutants. Quite low level of the SO2 emission was secured by the high-efficiency flue gas desulphurization system. The CO emissions of rather small values were detected only at extremely low excess air ratios. The emission rate and specific emission (i.e. per MWh of electricity produced) for NOx, SO2 and CO were quantified using experimental emission concentrations of the pollutants. Meanwhile, the emission characteristics for CO2 were determined with the use of fuel-C and fuel consumption by the boiler. In addition, the emission rate and specific emission for PM were estimated by taking into account the actual fuel-ash content and fuel consumption by the boiler, as well as the effects of SO2 adsorption by fly ash in the boiler gas ducts and overall ash-collecting efficiency of the electrostatic precipitators and flue gas desulphurization system. Elevated CO2 and NOx emissions from the 300-MW boiler units firing Thai lignite are of great concern.  相似文献   

13.
The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel combustion process, pollutant formation and exhaust aftertreatment. Because its physical properties and chemical composition are distinctly different from conventional diesel fuel, biodiesel can alter the fuel injection and ignition processes whether neat or in blends. As a consequence, the emissions of NOx and the amount, character and composition of particulate emissions are significantly affected. In this paper, we survey observations from a spectrum of our earlier studies on the impact of biodiesel on diesel combustion, emissions and emission control to provide a summary of the challenges and opportunities that biodiesel can provide.  相似文献   

14.
《Fuel》2006,85(5-6):695-704
This work investigates partial HCCI (homogeneous charge compression ignition) combustion as a control mechanism for HCCI combustion. The premixed fuel is supplied via a port fuel injection system located in the intake port of DI diesel engine. Cooled EGR is introduced for the suppression of advanced autoignition of the premixed fuel. The premixed fuels used in this experiment are gasoline, diesel, and n-heptane. The results show that with diesel premixed fuel, a simultaneous decrease of NOx and soot can be obtained by increasing the premixed ratio. However, when the inlet charge is heated for the improved vaporization of diesel fuel, higher inlet temperature limits the operational range of HCCI combustion due to severe knocking and high NOx emission at high premixed ratios. Gasoline premixing shows the most significant effects in the reductions of NOx and soot emissions, compared to other kinds of premixed fuels.  相似文献   

15.
H.E. Saleh 《Fuel》2009,88(8):1357-136
Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is a very good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were made in two sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME are determined and compared. Secondly, tests were performed at two speeds and loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Also, effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NOx emissions with JME fuel especially in light duty diesel engines. A better trade-off between HC, CO and NOx emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty.  相似文献   

16.
E Hampartsoumian  B.M Gibbs 《Fuel》2003,82(4):373-384
The advanced reburning process for NOx emission control was studied in a down-fired 20 kW combustor by evaluating the performance of 15 pulverised coals as reburning fuels. The proximate volatile matter contents of the coals selected ranged from around 4 to 40 wt% (as received) with elemental nitrogen contents from around 0.6 to 2.0 wt%. The effects of reburn fuel fraction, reburning zone residence time, ammonia agent injection delay time (relative to the reburn fuel and burnout air injection points) and the nitrogen stoichiometric ratio are reported in detail and the optimum configurations for advanced reburning, established as a function of operating condition and coal type. The experimental results show that advanced reburning can reduce NOx emissions up to 85%. The maximum benefits of advanced reburning over conventional reburning were observed at the lower reburn fuel fractions (around 10%). The results demonstrate that under advanced reburning conditions equivalent or higher levels of NOx reduction can be achieved while operating the reburn zone closer to stoichiometric conditions compared with conventional reburning operating at high reburn fuel fractions (20-25%). Thus the practical problems associated with fuel-rich staged operation can be reduced. The effect of coal properties on the advanced reburning performance was also investigated. As with conventional reburning, the fuel nitrogen content of the coal used was found to have little influence on the NOx reduction efficiency except at the highest reburn fuel fractions. There was, however, a strong correlation between the effectiveness of advanced reburning and the volatile content of the reburning fuels, which not only depended on the reburn fuel fraction, but also the mode (rich or lean) of advanced reburning operation. These parameters are mapped out experimentally to enable the best operating mode to be selected for advanced reburning as a function of the reburning fuel fraction and volatile content.  相似文献   

17.
Mingfa Yao  Hu Wang  Zunqing Zheng  Yan Yue 《Fuel》2010,89(9):2191-2201
Experimental study was conducted to investigate the influence of the diesel fuel n-butanol content on the performance and emissions of a heavy duty direct injection diesel engine with multi-injection capability. At fixed engine speed and load, exhaust gas recirculation rates were adjusted to keep NOx emission at 2.0 g/kW h. Diesel fuels with different amounts (0%, 5%, 10% and 15% by volume) of n-butanol were used. The results show that the n-butanol addition can significantly improve soot and CO emissions at constant specific NOx emission without a serious impact on the break specific fuel consumption and NOx. The impacts of pilot and post injection on engine characteristics by using blended fuels are similar to that found by using pure diesel. Early pilot injection reduces soot emission, but results in a dramatic increase of CO. Post injection reduces soot and CO emissions effectively. Under each injection strategy, the increase of fuel n-butanol content leads to further reduction of soot. A triple-injection strategy with the highest n-butanol fraction used in this study offers the lowest soot emission.  相似文献   

18.
The influence of burner-port geometry in the mechanisms of hydrocarbon oxidation and NOx formation from a 50 kW industrial-type methane-fired burner was investigated experimentally. Imaging and tomographic reconstruction techniques were used to assess the effects of port geometry upon flame visible length and C2 chemiluminescence distribution in the recirculation zone. C2 emission of methane flames depicts that low fuel jet velocities allow very rich conditions at recirculation zone and lead methane oxidation through O2-scarcity mechanism. Higher velocities imply that methane oxidises via a path including dissociation into free radicals. In-furnace measurements were performed from a refractory-lined vertical furnace. NOx concentration results revealed that NO formation is closely connected with the dissociation process, suggesting that prompt-NOx mechanism is more important than hitherto supposed.  相似文献   

19.
Myung Yoon Kim  Chang Sik Lee   《Fuel》2007,86(17-18):2871-2880
The aim of this work was to investigate the effect of narrow fuel spray angle injection and dual injection strategy on the exhaust emissions of a common-rail diesel engine. To achieve successful homogeneous charge compression ignition by an early timing injection, a narrowed spray cone angle injector and a reduced compression ratio were employed. The combination of homogeneous charge compression ignition (HCCI) combustion and conventional diesel combustion was studied to examine the exhaust emission and combustion characteristics of the engine under various fuel injection parameters, such as injection timings of the first and second spray.The results showed that a dual injection strategy consisting of an early timing for the first injection for HCCI combustion and a late timing for the second injection was effective to reduce the NOx emissions while it suppress the deterioration of the combustion efficiency caused by the HCCI combustion.  相似文献   

20.
Nitrogen oxides (NOx) is one of the harmful emissions from power plants. Efforts are made to reduce NOx emissions by researchers and engineers all the times. NOx emissions are from three resources during the combustion: prompt NO, fuel NO and thermal NO. The last one - thermal NO, which is described by ‘Zeldovich-mechanism’, is the main source for NOx emissions. The thermal NO emission mainly results from the high combustion temperature in the combustion process. In order to control the NO formation, the control of peak combustion temperature is the key factor, as well as the oxygen concentration in the combustion areas. Flameless oxidation (FLOX) and continuous staged air combustion (COSTAIR) are two relatively new technologies to control the combustion temperature and the reaction rate and consequently to control the NOx emissions.In this study both FLOX and COSTAIR technologies are assessed based on a 12 MWe, coal-fired, circulating fluidised bed combustion (CFBC) power plant by using ECLIPSE simulation software, together with a circulating fluidised bed gasification (CFBG) plus normal burner plant. Two different fuels - coal and biomass (straw) are used for the simulation. The technical results from the study show that the application of FLOX technology to the plant may reduce NOx emissions by 90% and the application of COSTAIR technology can reduce NOx emissions by 80-85% from the power plant. The emissions from the straw-fuelled plants are all lower than that of coal-fuelled ones although with less plant efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号